Daylight + Electric Light Integration (DELI)

Pacific Northwest National Laboratory Sarah Safranek | Senior Associate Lighting Research Engineer 503-227-2467 | Sarah.Safranek@pnnl.gov

Project Summary

<u>Timeline</u>:

Start date: Oct 2019

Planned end date: Sep 2022

Key Milestones (expected through FY21)

- 1. Technical report on spectral simulation sensitivity analysis.
- 2. Technical report on energy impacts of daylight + electric light integration.

Budget:

Total Project \$ to Date:

- DOE: \$710K
- Cost Share: \$0

Total Project \$:

- DOE: \$997K
- Cost Share: \$0

Key Partners:

Lawrence Berkeley National Laboratory

University of Washington

University of Oregon

Project Outcome:

- Transform the way that daylighting and electric lighting systems are designed and implemented in buildings.
- Inform the development of spectral simulation software tools for daylight and electric lighting systems.
- Provide new lighting system design guidelines that balance circadian lighting metric recommendations with building energy savings.

Team

Sarah Safranek Principle Investigator PNNL – 4 yrs MS, Arch Eng

Belal Abboushi Technical Support PNNL – 2 yrs PhD, Arch

Bob Davis Technical Director PNNL – 8 yrs MS, Arch Eng PhD, Psychology 30+ yrs lighting Fellow IES

Kelly Gordon Program Manager MPP, Public Policy Team Leader, Advanced Lighting PNNL - 20 yrs

External Collaborators

Mehlika Inanici Univ. Washington MS, Building Science PhD, Arch

Siobhan Rockcastle Univ. Oregon MS, Building Technology PhD, Arch

Alen Mahic Univ. Oregon MS, Arch

Challenge

Solid-State Lighting R&D Opportunities (2019); Lighting Application Efficiency topic:

- Priority: "Develop a general framework, mathematical model, and *computer simulation approach* to characterize lighting application efficiency for any lighting application."
- "A key pillar to Lighting Application Efficiency framework will be ability to predict light levels, light directionality, and *spectral power distribution* for any area in a lighted space..."
- Continued advancements and adoption of LED lighting has the potential to save 500 TWh per year by 2035 compared to conventional lighting technologies. Lighting Application Efficiency research, including tools and outcomes from this project, will help to realize these savings.

Metrics	2019 Status	Interim 2025 Targets	2035 Targets
Lighting Application Efficiency framework and model	No comprehensive framework or model	Application agnostic model that can be used to optimize total <i>Lighting</i> <i>Application Efficiency</i>	Ubiquitous use of Lighting Application Efficiency modeling for building, room, lighting layout, and product design

Challenge: Problem Definition

- Meeting existing recommendations for circadian lighting metrics (equivalent melanopic lux, circadian stimulus, melanopic equivalent daylight illuminance) will require higher light levels than what is currently recommended by Illuminating Engineering Society for visual tasks.
- PNNL study estimates that designing to meet circadian lighting metrics with electric lighting alone may increase light levels and energy use by 10-100%.
 - See Safranek et al., 2020, Energy Impact of Human Health and Wellness Lighting Recommendations for Office and Classroom Applications, *Energy & Buildings*
- Daylight and tunable electric lighting systems are expected to help counter this increase in energy but their impact on total building energy use needs further investigation.
- "Research during [the last thirty years] estimated that electric lighting controls that are responsive to daylight will have the potential to save 50-80% of electric lighting systems energy."
 - See Thomson et al., 2021, Achieving Integrated Daylighting and Electric Lighting Systems: Current State of the Art and Needed Research, *Energies*.

Challenge

Building standards with circadian lighting recommendations:

Lighting software tools:

Adaptive Lighting for Alertness

Radiance

,

LARK SPECTRAL LIGHTING

Circadian lighting metrics:

- Equivalent melanopic lux (EML)
- Circadian stimulus (CS)
- Melanopic equivalent daylight illuminance (mEDI)

Circadian lighting metrics, recommendations, and software tools are still developing.

Availability of software tools for calculating circadian lighting metrics for daylight + electric light are currently limited and most have not been formally validated.

Approach

Integrating Simulations of Daylight + Electric Light

- Evaluate existing software tools for spectral simulations of daylight and electric light.
- Using existing software tools, create a workflow to simulate daylight and electric light annually.
- Generate energy estimates for designing to meet circadian lighting recommendations.

Approach

Integrating Simulations of Daylight + Electric Light

Impact

- Quantified potential error in using existing 3-channel spectral simulation tools to represent LED spectra (19% error). Showed improved accuracy in simulating LED spectra by using 9- or 81-channels (<10% error).
 - See Abboushi et al., "The Effect of Spectral Resolution of Light Sources on Photopic and a-opic Quantities" published in Photonics West Digital Forum Conference Proceedings Feb 2021
- Identified deficiencies in existing sky model used in spectral simulations of daylight. Developed framework for increasing the accuracy in modeling the spectral variability of daylight.
 - See Inanici et al., "Evaluation of Sky Spectra and Sky Models in Daylighting Simulations," submitted to Lighting Research & Technology Jul 2021
- Created simulation workflow to integrate daylight and electric light for estimating circadian lighting metrics. Daylight dimming estimated to provide up to 44% in energy savings compared to electric lighting only scenarios.
 - See Safranek et al., "Energy Impacts of Human Health and Wellness Recommendations with Daylight and Electric Light Integration" DOE technical report, Mar 2021, PNNL-31171

Progress : Number of Spectral Channels

GOALS:

- How do available spectral simulation tools for daylight or electric light compare for predicting circadian lighting metrics?
- How do different simulation parameters impact predicted metrics in two office models?

KEY IMPACT:

- Identified deficiencies in standard 3-channel simulation tools.
- Showed improved accuracy in simulating LED spectra by going from 3-channels (19% error) to 9- or 81-channels (<10% error).

Small Office Model 320 ft² 6 desks 3 luminaires 45% WWR

Large Office Model 2060 ft² 40 desks 24 luminaires 90% WWR

Progress : DELI Simulation & Energy Estimates

Single Space Whole Building Proof of Concept The Proof of Concept The Spectral of Concept Spectral of Concept

GOALS:

 Create workflow using existing software tools for spectral simulations of daylight and electric light to estimate the energy impacts of designing to meet circadian lighting recommendations.

KEY IMPACT:

- Simulations with daylight dimming had an estimated energy savings of 44% compared to those with electric lighting only.
- Output of annual dimming schedules to be used in wholebuilding energy modeling software tools.

Dimming Schedules

Annual Energy Estimates

Stakeholder Engagement

- Building systems researchers,
- Lighting designers,
- Architects,
- Building owners

DOE Lighting R&D Workshop:

Daylight + Electric Light Integration (DELI) Poster, Jan 2021

ARCHITECTURAL ENGINEERING INSTITUTE

RAL Jun 20

Conference presentation: "Spectral Simulations of Daylight and Electric Light in Offices," Mar 2021 IES Webinar Series: "Meeting the Moment: Lighting and WELLNESS," Jun 2021 | 300+ attendees

> **Conference presentation:** "From Static to Dynamic," Oct 2019 | 150+ attendees

Remaining Project Work

Validation studies – How do ALFA estimates of spectral irradiance compare to measurements in laboratory and field environments with LED luminaires?

Increased use and acceptability of spectral simulation software tools

Include additional lighting parameters to increase accuracy of whole building energy models

In progress through FY 21

Increase capabilities of simulation workflow for a single space to include:

- Glare
- Shading
- Zonal control of electric lighting

Collaborators: O OREGON

Planned for FY 22:

- Scale-up to allow for whole building energy simulations
- Estimate **thermal loads** from daylight
- Provide new lighting system design recommendations for meeting circadian lighting metrics with consideration of energy impacts

Thank You

Pacific Northwest National Laboratory Sarah Safranek | Senior Associate Lighting Research Engineer 503-227-2467 | Sarah.Safranek@pnnl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$997K Variances: No variances; on track to original planned budget. Cost to Date: \$523K Additional Funding: \$0

Budget History								
FY 2020 (past)		FY 2021	. (current)	FY 2022 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$302K	-	\$400K	-	\$287K	-			

Project Plan and Schedule

Project Schedule												
Project Start: Oct 2019		Comple	eted Wo	rk		lilestone	/Deliver	able (Or	iginally I	Planned)	1	
roject End: Sep 2022		Planned Work			Milestone/Deliverable (Actual)							
					▼ 							
Milestone	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
M1: Simulation plan												
M2: Initial hypotheses												
M3: Sensitivity analysis report												
M4: Report on energy use implications												
M5: Validation plan												
M6: Validation status report												
M7: Validation studies results												
M8: Draft paper(s) for journal submission												
M9: Design recommendations												