Building Intelligence with Layered Defense using Security-Constrained Optimization and Security Risk Detection (BUILD-SOS)

University of Central Florida Qun Zhou Sun, Director, Smart Infrastructure Data Analytics Laboratory Email: <u>QZ.Sun@ucf.edu</u> Tel: 407-823-3284

Project Summary

Timeline:

Start date: 04/01/2020

Planned end date: 07/30/2023

Key Milestones

- 1. Fault and attack detection algorithm. 05/30/2021
- 2. Establish emulated environment. 7/30/2021
- 3. Security-constrained stochastic optimization for controls. 7/30/2022
- 4. HIL testbed and real building demonstration. 7/30/2023

Budget:

Total Project \$ to Date:

- DOE: \$784,071
- Cost Share: \$278,302Total Project \$:
- DOE: \$3,000,000
- Cost Share: \$750,000

Key Partners:

UCF	Siemens
NREL	U Mass Lowell

Project Outcome:

BUILD-SOS provides a holistic solution to secure building operations and can be broadly applied to commercial buildings and campuses that are prone to cyber threats.

Related to MYPP:

- Improve cost & performance of fault-tolerant integrated control systems
- Predictive & prioritizing maintenance algorithms & adaptive controls that optimize building operations

Team

- Develop data analytics and robust optimization algorithms; Provide campus building for demonstration; Overall project management.
- Energy modeling; system and communication integration; testbed development and monitoring.

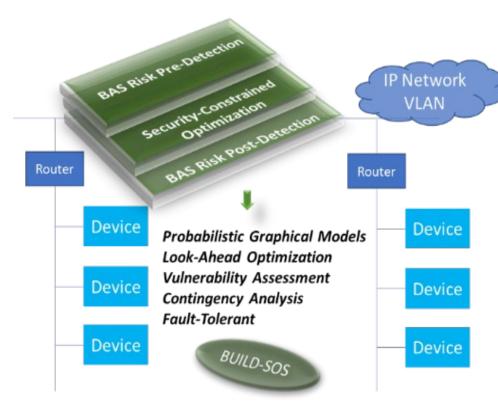
• Provide software and hardware platform for research; assist to collect UCF campus BAS data; help with market transformation.

• Security vulnerability assessment; attack modeling and implementation; cybersecurity testbed development.

Challenge

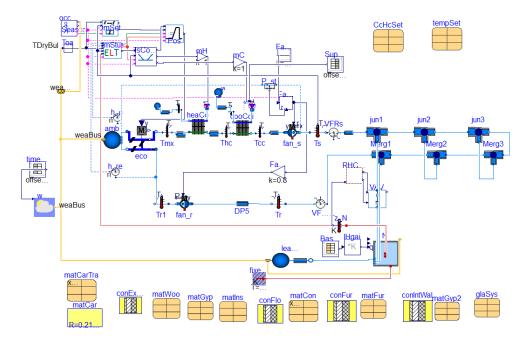
• Cyber threats are real, and buildings can be targeted.

- Smart buildings are large IoT networks, which may have vulnerabilities through which malicious actors can access critical systems.
- Opportunities exist to improve security through design of next-generation building automation systems. Legacy systems may be harder to protect.


Existing Approaches

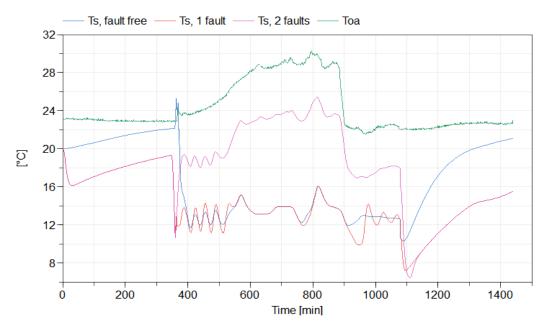
- Most building cyber security solutions are from IT perspectives and lack OT insights.
- Most existing Fault Detection and Diagnosis (FDD) tools consider single mechanical faults, and do not take into account cyber-induced faults, which could be more sophisticated, coordinated, and simultaneous.
- The state-of-the-art building controls are mostly aimed at improving efficiency while robustness against faults and cyber threats are generally not a priority.
- Most existing methods are deterministic while practically smart buildings are uncertain, with uncertainties come from building modeling, data sources, and even the unobservability of adversarial events.

Our Approach – Overview of Layered Defense


Distinctive Characteristics

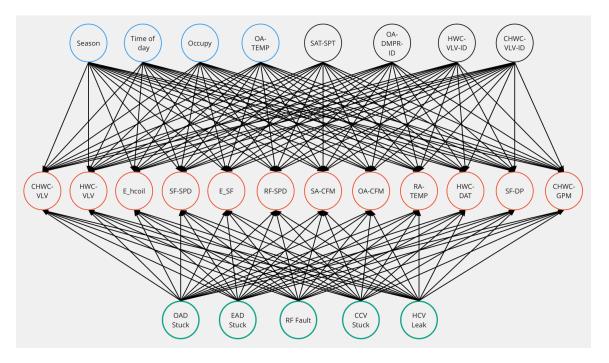
- The BUILD-SOS platform is based on advanced data analytics and stochastic optimization.
- Hackers need to deeply understand both probabilistic detection algorithms and stochastic controls in order to execute any effective attacks.
- The layered approach provides a holistic cyber security solution bridging IT and OT.

Approach – Cyber-Induced Fault Data Generation


- Data from real-world BAS attacks are not available
- Traditional FDD algorithms are not intended to provide attack detection.

 Building model in Modelica and calibrated using ASHRAE 1312 project data

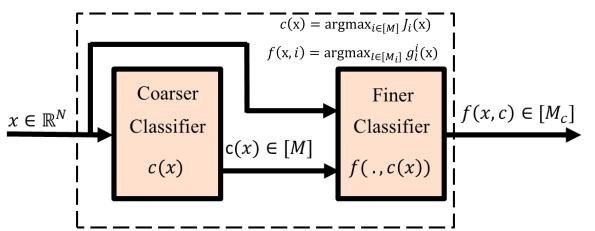
Reference :


Wen, J., and S. Li. "RP-1312–Tools for evaluating fault detection and diagnostic methods for air-handling units." *ASHRAE, Tech. Rep, Tech. Rep* (2012).

- Single fault and simultaneous fault data generation
- Coordinated attacks will have more severe impact!!

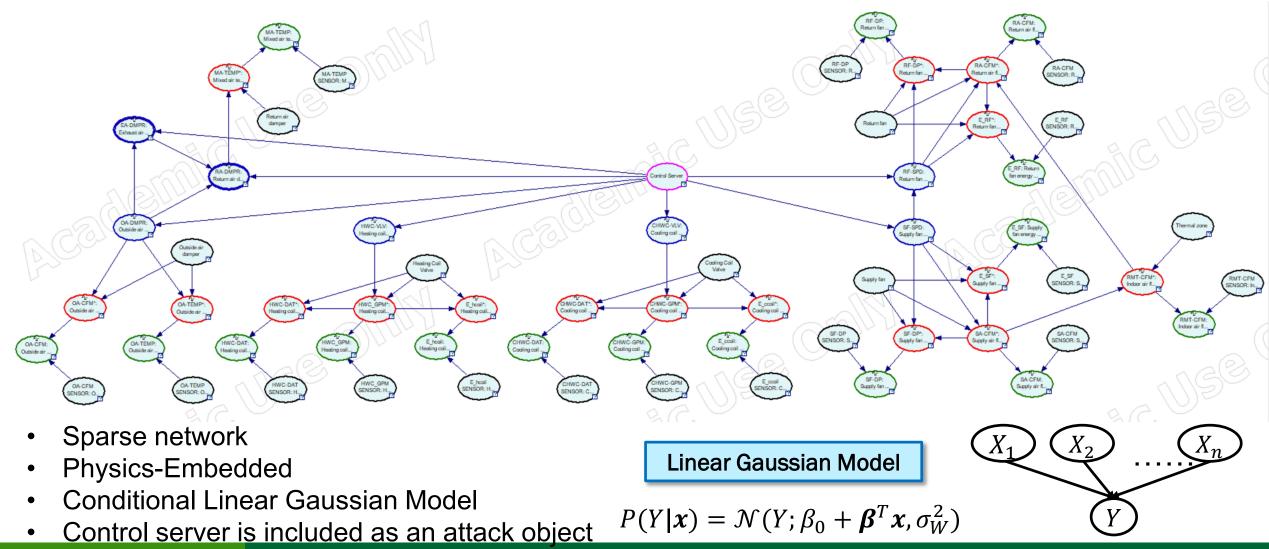
Approach – Fault and Attack Detection Algorithms

Causal-based Bayesian Networks



- A dense fully-connected network
- Network parameter learning using maximum likelihood
- Inference using variable elimination
- Root nodes are sources of uncertainties: environment inputs, human inputs, and component states.

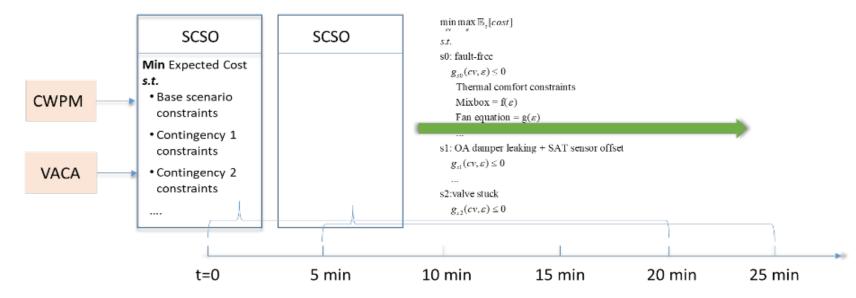
Domain Adaptation using Kernel Mean Matching


minimize
$$\| \mathbb{E}_{\mathbf{x} \sim \mathbf{p}_{t}} [\Phi(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim \mathbf{p}_{s}} [\beta(\mathbf{x})\Phi(\mathbf{x})] \|_{F}^{2}$$

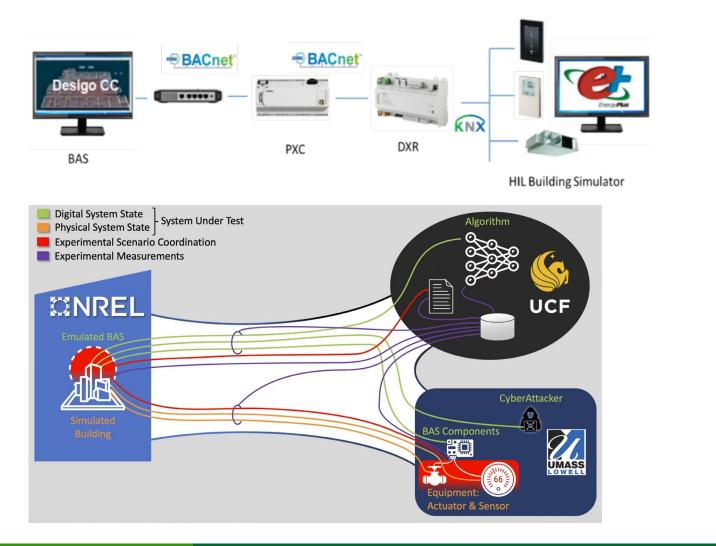
 β
Subject to $\beta(\mathbf{x}) \ge 0$ and $\mathbb{E}_{\mathbf{p}_{s}} [\beta(\mathbf{x})] = 1$

Hierarchical Classifiers

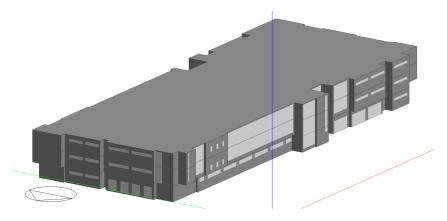
Approach – Fault and Attack Detection Algorithms


• Physics-Embedded Bayesian Networks to Detect Cyber-Induced Faults

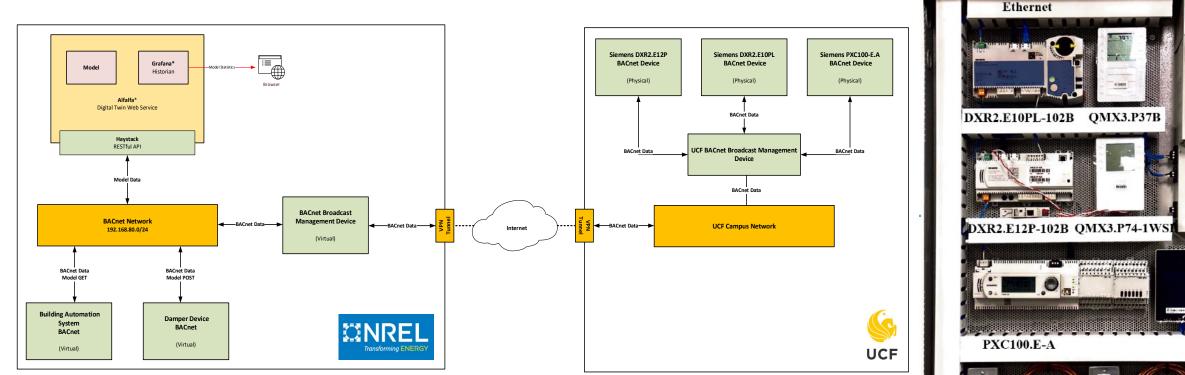
U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

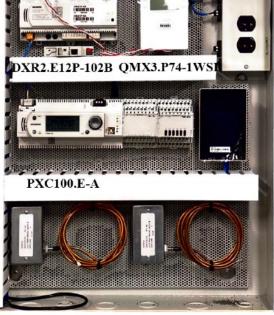

Approach – Fault-Tolerant Stochastic Controls

- Probabilistic modeling of each building component given unknowns
- Vulnerability Assessment: Investigate different attack scenarios and assess the vulnerability of each component
- Contingency Analysis: Rank the most vulnerable scenarios and integrate into fault-tolerant controls
- Fault-Tolerant Controls: Security-Constrained Stochastic Optimization (SCSO)



Approach – Testbed and Building Demonstration


Building Cyber-Security Testbed (BCST)



Approach – Building Cyber Security Testbed

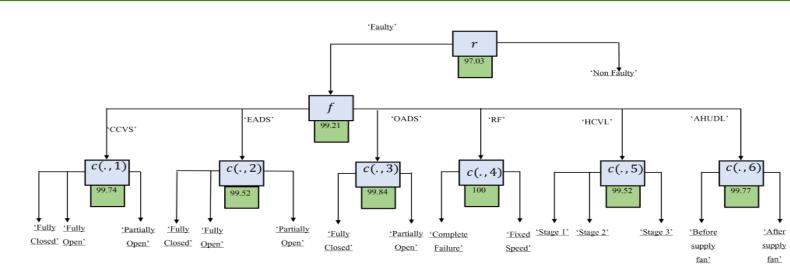
Emulated environment and Hardware in the Loop

Impact

- The resulted BUILD-SOS is expected to provide a holistic solution to secure building operations and can be broadly applied to commercial buildings and campuses that are prone to cyber threats.
- Demonstrates feasibility of fundamental methods and algorithms for a layered defense system serving smart buildings with advanced sensing technology.
 Demonstrates >20% accuracy improvement for fault detection including cyberinduced faults and coordinated attacks.
- Emulation and field experiments demonstrate the real threats from cyber attacks in buildings and the robustness of proposed layered defense system
- Contributes directly to BTO's MYPP/Logic Model:
 - Improve cost & performance of fault-tolerant integrated control systems
 - Data collection methods & analytics for enhanced building control systems
 - Predictive & prioritizing maintenance algorithms & adaptive controls that optimize building operations

Progress – Detection Results from Bayesian Networks

- Five faults are examined, including one cyber attack on fan speed command.
- Detection probabilities are given for each object.
- Accuracy improvement over the state of the art FDD > 20%
- Passed Go/No-Go on fault and attack detection in the first budget period.

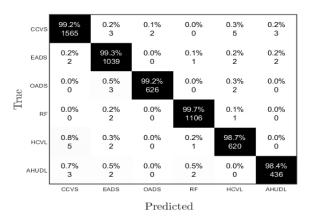

Fould do o ministra	Dete	Rule-based	Benchmark	Improved Ru	e-based System	Bayesian Network		
Fault description	Date	Detection	Diagnosis	Detection	Diagnosis	Detection	Diagnosis	
EA Damper Stuck (Fully Open)	8/20/2007	8%	0%	12.32%	6.45%	55%	55%	
EA Damper Stuck (Fully Close)	8/21/2007	0%	0%	9.87%	4.03%	43%	43%	
Return Fan at fixed speed (30%spd)	8/22/2007	100%	35%	100%	99.65%	100%	100%	
Return Fan complete failure	8/23/2007	100%	99%	100%	99.96%	100%	100%	
OA Damper Stuck (Fully Closed)	8/26/2007	99%	88%	99.17%	88.64%	82%	81%	
Cooling Coil Valve Stuck (Fully Closed)	8/27/2007	100%	67%	100%	100%	98%	98%	
Heating Coil Valve Leaking (Stage 1 - 0.4GPM)	8/28/2007	0%	0%	3.64%	2.17%	80%	76%	
Heating Coil Valve Leaking (Stage 2 – 1.0GPM)	8/29/2007	51%	28%	51.03%	30.97%	87%	87%	
Heating Coil Valve Leaking (Stage 3 – 2.0GPM)	8/30/2007	96%	28%	96.42%	32.5%	88%	88%	
Cooling Coil Valve Stuck (Fully Open)	8/31/2007			87.12%	79.25%	98%	89%	
Cooling Coil Valve Stuck (Partially Open - 15%)	9/1/2007	99%	61%	90.35%	78.56%	96%	96%	
Cooling Coil Valve Stuck (Partially Open - 65%)	9/2/2007			71.1%	45.12%	100%	78%	
Cooling Coil Valve Reverse Action	9/3/2007			88%	65.1%	99%	77%	
OA Damper Leak (45% Open)	9/5/2007	0%	0%	8.92%	2.46%	83%	63%	
OA Damper Leak (55% Open)	9/6/2007	11%	0%	9.86%	6.15%	89%	89%	
AHU Duct Leaking (after SF)	9/7/2007	9%	0%	5.45%	3.78%			
AHU Duct Leaking (before SF)	9/8/2007	90%	84%	90.34%	80.42%			

Object label	Return fan speed fixed 20%	Return fan speed fixed 30%	Return fan speed fixed 80%	Cyber attack RF 80% speed	Return fan complete failure
CTRL_SERVER	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Attack RF 80SPD: 1.0	Fault free: 1.0
HCV	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
HWC_GPM_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0 Fault free: 1.0		Fault free: 1.0
HWC_DAT_SENSOR	Fault free: 1.0	It free: 1.0 Fault free: 1.0 Fault free: 1.0 Fault free: 1.0		Fault free: 1.0	
E_HCOIL_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
CCV	Fault free: 1.0	Fault free: 0.930435, CCV fully open: 0.069565	Fault free: 0.930435, CCV fully open: 0.069565	Fault free: 1.0	Fault free: 0.981159, CCV fully open: 0.018841
CHWC_GPM_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
CHWC_DAT_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
E_CCOIL_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
SF	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 0.998551
SA_CFM_SENSOR	Fault free: 0.995652	Fault free: 1.0	Fault free: 0.989855	Fault free: 1.0	Fault free: 0.985507
SF_DP_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 0.97971
E_SF_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
RF	RF 20SPD: 0.931884, RF comp fail: 0.049275	RF 30SPD: 1.0	RF 80SPD: 1.0	RF 80SPD: 1.0	RF comp fail: 0.994203, RF 20SPD: 0.005797
RA_CFM_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 0.982609	Fault free: 1.0
RF_DP_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
E_RF_SENSOR	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
ZONE	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0	Fault free: 1.0
RMT_CFM_SENSOR	Fault free: 0.995652	Fault free: 1.0	Fault free: 0.989855	Fault free: 1.0	Fault free: 0.982609

Causal-based Bayesian networks

Physics-Embedded Bayesian networks

Progress – Robustness of Hierarchical Classifiers



Example: Declare faulty as non-faulty

Attack FDD algorithms??

We find that Hierarchical
 FDD is more robust than a single layer classifier

Before the Attack

After the Attack

	ccvs	25.0% 394	3.7% 59	9.3% 147	16.0% 252	41.8% 659	4.2% 67
	EADS	DS 0.6% 0.0% 6 0		3.2% 33	46.6% 487	28.7% 300	21.0% 220
True	OADS	1.6% 10	9.0% 57	2.4% 15	19.0% 120	42.6% 269	25.4% 160
H	RF	26.7% 296	10.2% 113	18.8% 208	1.0% 11	40.6% 450	2.8% 31
	HCVL	30.7% 193	17.2% 108	0.5% 3	29.8% 187	1.1% 7	20.7% 130
	AHUDL	8.1% 36	69.5% 308	0.0% 0	0.0% 0	22.1% 98	0.2% 1
		CCVS	EADS	OADS	RF	HCVL	AHUDL
				Pred	icted		

Attack	Success Ratio	Perceptibility
HFDD	88.40%	44.05%
Single-layer	94.92%	21.24%

Attacking HFDD is *harder* than a traditional single-layer FDD

Progress – Emulation and BCST

	e Destination	Protocol Length Info PACpot_ADDU 62_Confirmed_PECwriteDroperty[_60] bipary_output_1_procept_yalue	
3852 1255.955010988 192	168.80.2 192.168.80.20	BACnet-APDU 60 Simple-ACK writeProperty[60]	
	168.80.20 192.168.80.2	BACnet-APDU 63 Confirmed-REQ writeProperty[61] binary-output,1 present-value	
3855 1256.168130347 192	168.80.20 192.168.80.2	BACnet-APDU 63 Confirmed-REQ writeProperty[62] binary-output,1 present-value	
	168.80.3 192.168.80.2	BACnet-APDU 60 Confirmed-REQ readProperty[32] binary-output,1 present-value	
3858 1256.180326696 192	168.80.2 192.168.80.3	BACnet-APDU 62 Complex-ACK readProperty[32] binary-output,1 present-value	
thernet II, Src: Vmware_a6:f3:	:: 192.168.80.3, Dst: 192.168.8 :: 47808, Dst Port: 47809 81)	/mware_f5:7f:95 (00:0c:29:f5:7f:95)	
BVLC-Length: 4 of 17 bytes BA uilding Automation and Control			
00 0c 29 f5 7f 95 00 0c 3	29 a6 f3 a0 08 00 45 00 · ·) · ·) · · 44 c6 c0 a8 50 03 c0 a8 • · · · · · · · · · · · · · · · · · ·))E. .@.@.DP W	
wireshark_ens37_20210715173826_Nm5cn	T.pcapng	Packets: 3858 · Displayed: 3336 (86.5%)	Profile: Defa
(Lite) L-07-15 17:59:21,078 - INFO erbosity of the app. L-07-15 17:59:21,078 - INFO	Use BAC0.log_level to adju	{'AirDamperCmd': 'active', 'MixedAirTempSensor': 24.10000038146 active	
or BAC0.log level('error') 1-07-15 17:59:21,078 - INFO 1-07-15 17:59:21,079 - INFO 1-07-15 17:59:21,083 - INFO 1-07-15 17:59:21,083 - INFO App 1-07-15 17:59:21,096 - INFO eDisconnected'> 1-07-15 17:59:21,118 - INFO viceConnected'> 1-07-15 17:59:21,118 - INFO viceConnected'> 1-07-15 17:59:21,118 - INFO viceConnected'> 1-07-15 17:59:21,118 - INFO viceConnected'> 1-07-15 17:59:21,117 - INFO	Starting TaskManager Using ip : 192.168.80.20 Starting app BAC0 started Registered as Simple BACne Update Local COV Task star Changing device state to D	<pre>{'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 inactive RP 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Ninactive one} {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 inactive</pre>	
L-07-15 17:59:21,078 - INFO L-07-15 17:59:21,079 - INFO L-07-15 17:59:21,083 - INFO L-07-15 17:59:21,083 - INFO L-07-15 17:59:21,083 - INFO App L-07-15 17:59:21,087 - INFO Disconnected'> L-07-15 17:59:21,118 - INFO viceConnected'> L-07-15 17:59:21,118 - INFO viceConnected'> L-07-15 17:59:21,118 - INFO	Starting TaskManager Using ip : 192.168.80.20 Starting app BACO started Registered as Simple BACne Update Local COV Task star Changing device state to F	<pre>e} active {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Nactive one} {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Notive one} active 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Nactive 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Nactive 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Nactive 469727, 'OutsideAirTempSensor': None, 'OutsideAirFlowSensor': Nactive {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 active {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 inactive one} . {'AirDamperCmd': 'inactive', 'MixedAirTempSensor': 24.100000381 inactive one}</pre>	

Denial of Service Attack Man-in-the-Middle Attack

Link for demonstration video: https://app.box.com/s/8y7hbdpx9kxvssozberwaqlcvfqkz34v

Stakeholder Engagement

- Forming the Industry Advisory Board
 - Confirmed participation of facilities departments from UCF, UMass Lowell, and Siemens.
 - IAB will meet quarterly through the end of the project.
 - Current IAB members are broadening the participation and reaching out to their vendors including Johnson Controls and Automated Logic.
- Publications
 - Disseminated our research results in both energy conferences and security conferences
 - 6 journal papers submitted, 3 accepted
 - 7 conference papers published.

- Second Year:
 - Conduct vulnerability assessment and develop attack scenarios
 - Integrate the risk assessment into stochastic robust fault-tolerant controls
- Third year:
 - Compare the controlled results with actual building responses and correct the attack detection results accordingly.
 - Fully integrate HIL testing across sites and demonstrate in UCF R1 building

Thank You

University of Central Florida Qun Zhou Sun

Director of Smart Infrastructure Data Analytics Lab

QZ.Sun@ucf.edu

407-823-3284

REFERENCE SLIDES

Project Budget

Project Budget: BP1 = \$1,279,302, BP2 = \$1,221,781, BP3 = \$1,248,911 **Variances**: None. **Cost to Date**: \$1,062,373 **Additional Funding**: None.

Budget History									
04/01/2020- FY 2020 (past)		FY 2021	. (current)	FY 2022 – 07/30/2023 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$784,071	\$278,302	\$1,157,021	\$281,340	\$1,058,908	\$190,002				

Project Plan and Schedule

Project Schedule		-							-				
Project Start: 04/30/2020		Completed Work											
Projected End: 07/30/2023			Active Task (in progress work)										
	Milestor					Milestone/Deliverable (Originally Planned) use for							
		Milestone/Deliverable (Actual) use when me						net on time					
		FY2021 FY2022					ŀ	FY2023					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)		
Past Work													
Milestone 1: Cyber-induced fault data generation													
Milestone 2: Bayesian networks and hierarchial fault and attack detection													
Milestone 3: Emulation Environment Implemented													
Current/Future Work													
Milestone 4: Building vulnerabilities identified													
Milestone 5: Attack scenarios developed given realistic attack costs													
Milestone 6: Fault-tolerant security-constrained stochastic optimization													
Milestone 7: Launch cyber-physical attacks in HIL BCST													
Milestone 8: UCF campus building demonstration													
Milestone 9: Results Dissemination													