
Separating Sensible and Latent Cooling with Electrically Charged Rotating Vortexes and Vapor Capturing Air Handler Technology

Auburn University Advanced Cooling Technologies, Inc. Johnson Control Inc.

Lorenzo Cremaschi Professor Department of Mechanical Engineering Auburn University

Tel: +1 (334) 844 3302 Email: lzc0047@auburn.edu

Project Summary

<u>Timeline</u>:

Start date: April 1, 2020 Planned end date: September 30, 2023 Key Milestones

- 1. Design electrospray Emitter, Sept. 2021
- 2. Proof-of-concept tests for 5 cfm; achieve 5% Dehumidification, Sept. 2022
- 3. Optimization and scale up to 200 cfm, Dec 2022
- 4. Technology Demo Unit, April 2023

Budget:

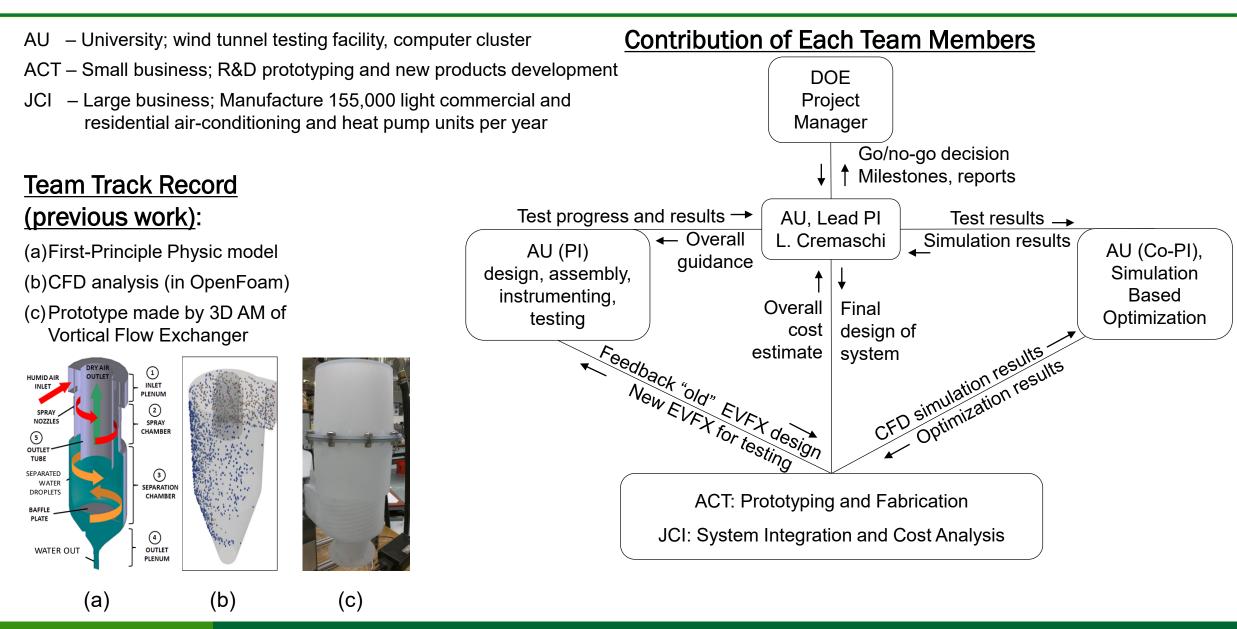
Total Project \$ to Date:

- DOE: \$563,093
- Cost Share: \$141,581

Total Project \$:

- DOE: \$1,457,470
- Cost Share: \$372,479

Key Partners:


Advanced Cooling Technologies, Inc.

Johnson Control Inc.

Project Outcome:

To develop and test <u>E</u>lectrospray <u>V</u>ortical <u>F</u>low eXchanger (EVFX) capable of flow rates of \geq 200 cubic feet per minute (cfm) and \geq 10% relative humidity to enable water vapor separation systems for separating sensible and latent cooling in heating, ventilation, and air conditioning (HVAC) systems.

Team

Challenge

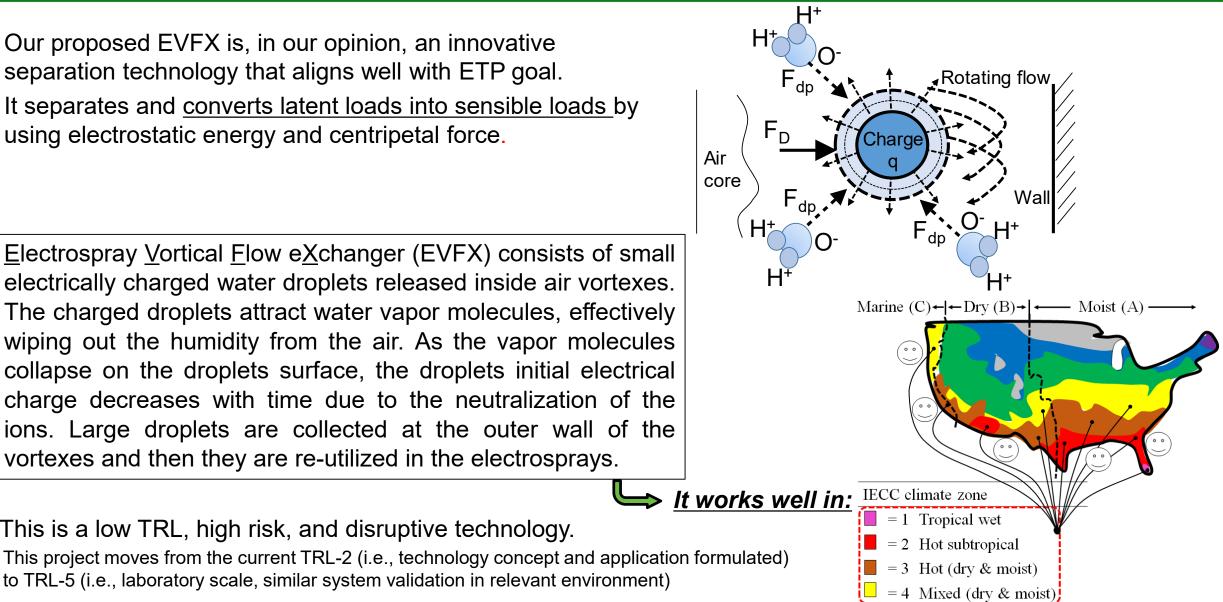
The Emerging Technology Program (ETP) has identified the goal of supporting the development of costeffective technologies capable of reducing the energy use of typical buildings by 45% by 2030, relative to high-efficiency technologies available in 2010.

BTO is seeking transformational non-vapor compression HVAC technologies to move beyond refrigerants, including hybrid technologies that are not purely based on vapor compression technologies.

Separate Sensible and Latent Cooling (SSLC) A/C systems, specifically technologies that have high performance under extreme conditions (i.e.,above 60% relative humidity) have potential to save 30% of energy when compared with a conventional baseline system. BTO is also interested in enhanced dehumidification capabilities that can operate at partial load or at lower cooling set points.

BTO identified system performance targets and desirable characteristics at part-load performance, including:

- Seasonal COP_{cooling} = 12.3
- Net zero water consumption
- Reduced size and/or weight relative to today's high efficiency units
- Readily available materials


Approach

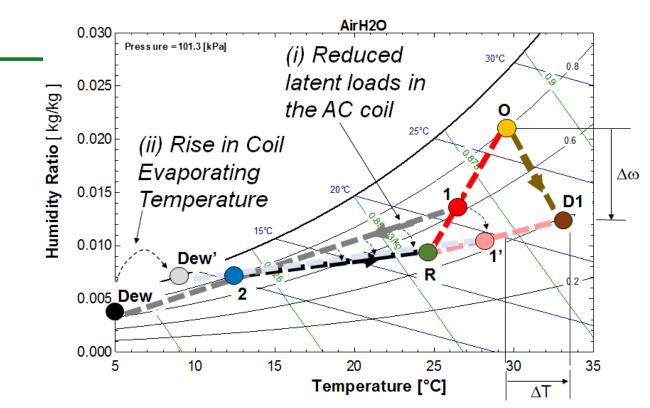
Our proposed EVFX is, in our opinion, an innovative separation technology that aligns well with ETP goal. It separates and converts latent loads into sensible loads by using electrostatic energy and centripetal force.

<u>Electrospray Vortical Flow eXchanger (EVFX) consists of small</u> electrically charged water droplets released inside air vortexes. The charged droplets attract water vapor molecules, effectively wiping out the humidity from the air. As the vapor molecules collapse on the droplets surface, the droplets initial electrical charge decreases with time due to the neutralization of the ions. Large droplets are collected at the outer wall of the vortexes and then they are re-utilized in the electrosprays.

to TRL-5 (i.e., laboratory scale, similar system validation in relevant environment)

This is a low TRL, high risk, and disruptive technology.

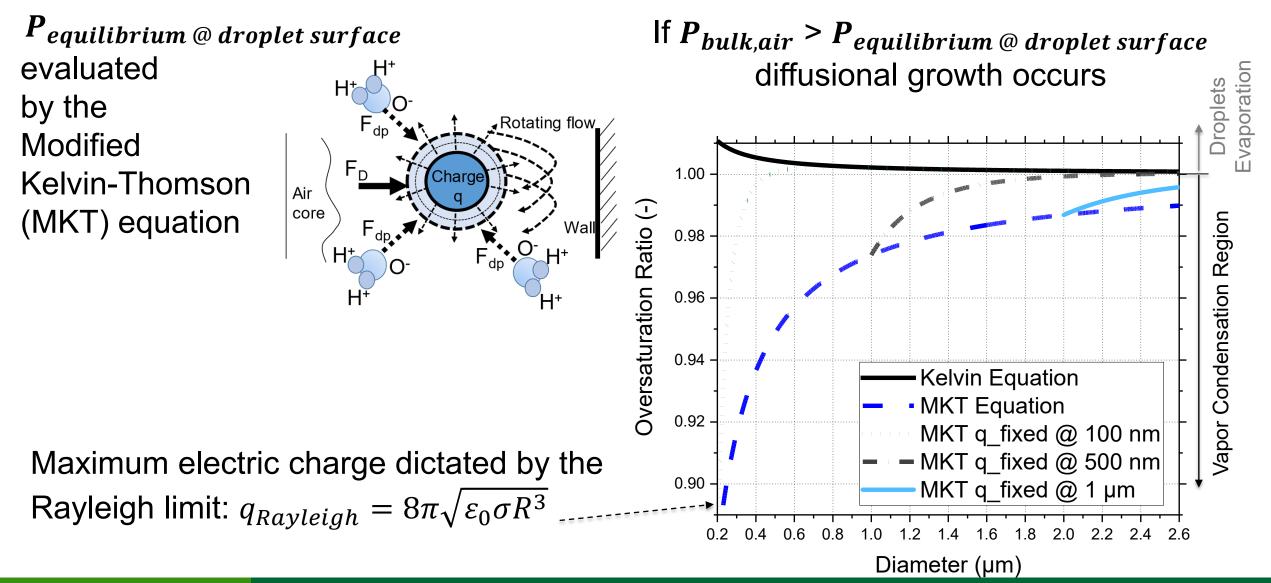
Impact

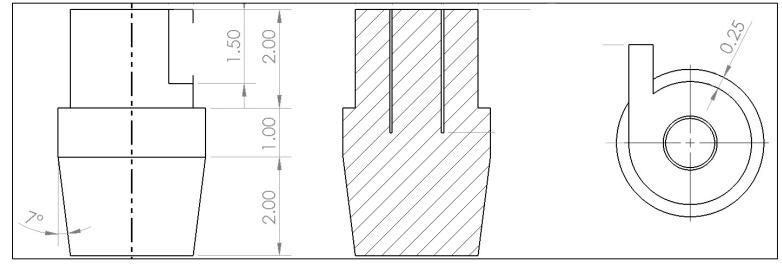

Technology Impact:

- "Not-In-Kind" AC dehumidification
- No toxic, no corrosive, no water consumption
- Integrate well with existing HVAC air handler
- Unit energy savings ranging from 15% to 39% as a result of (i) reduced latent load on evaporator coil and (ii) higher evaporating temperature
- Technical energy savings potential of 0.6 Quads
- For consumers, reduction in the annual cost of AC and improved air quality

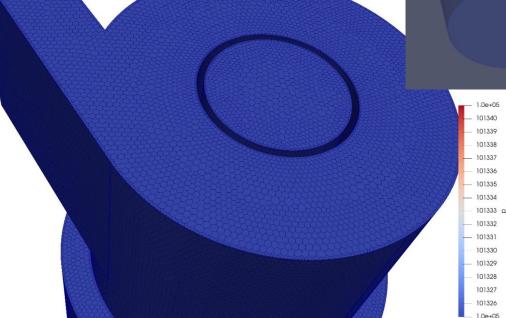
(clean dust, smoke, odors).

In addition:

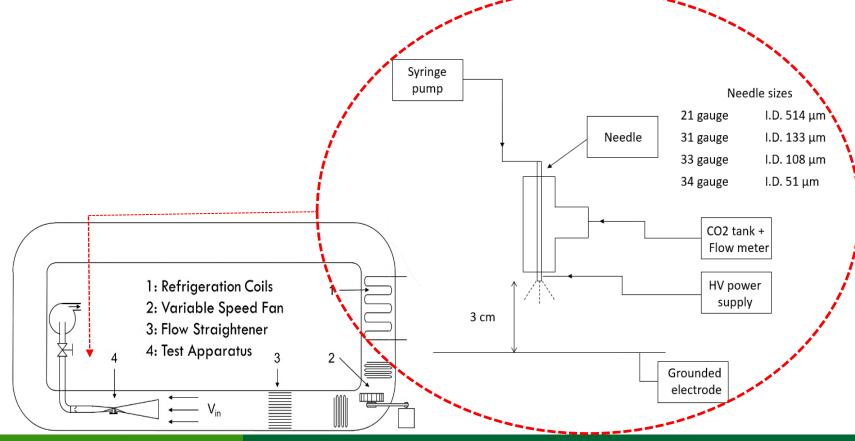

- EVFX made of plastic and steel inserts
- Smaller/lighter evaporator coils
- Nozzles are readily available in the market


Metric Description	EVFX Metric
Primary Energy Savings	576 TBtu
Seasonal Coeff. of Performance (COP) _{Cooling} ⁽²⁾	≥12.3
Installed cost ⁽¹⁾⁽³⁾	≤ \$2,500/unit
Installed cost per cooling unit ⁽¹⁾	≤ \$12/kBtu/h
Note ⁽¹⁾ : Measured in 2019\$ Note ⁽²⁾ : Average across 57.5°F to 100.4°F in Climate zone 3A	
NOLE VI. AVELAGE ACTOSS 57.5 1 TO 100.4 1 III CIIIIIALE ZOILE SA	

Note ⁽³⁾: Average between residential (\$6K) and commercial


Progress – Vapor Condensation Thermodynamic Model

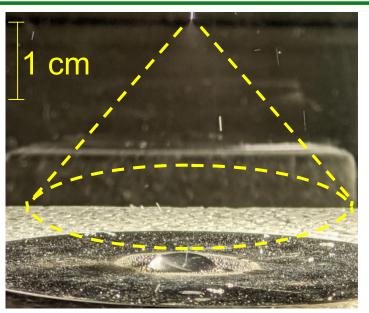
Progress – CFD Numerical Multi-Phase Flow Model

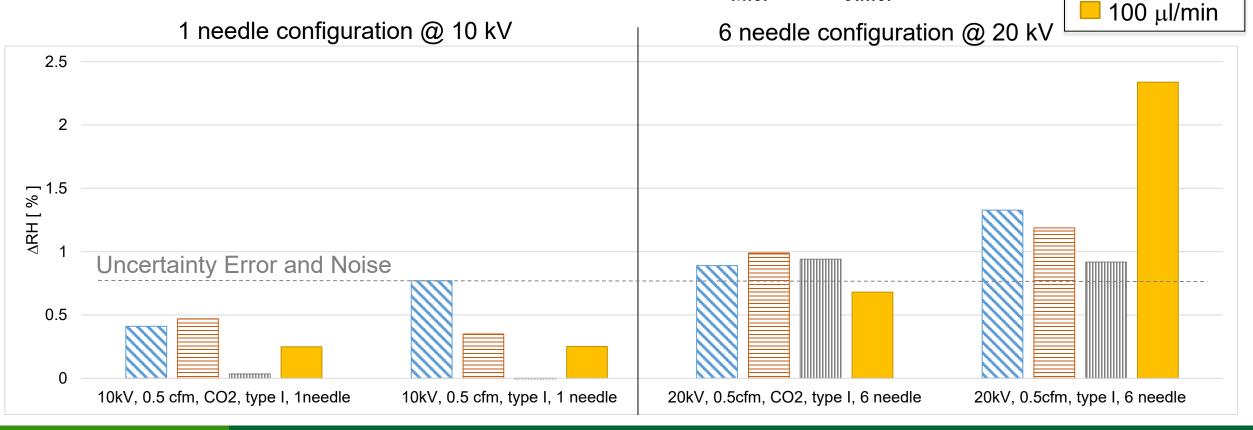


- CFD model developed in OpenFoam
- Electrically charged droplets sprayed in the air flow.
- Droplets grow and then move in the vortex tube where they are separated from the air

Progress – CFD Numerical Model Experimental Validation

Low installed cost and readily available materials; electrosprays have been used for decades in spray painting and fuel (diesel engine) atomization and injection. Using off-the-shelf components from these areas, we recently successfully built a proof-of-concept electrospray prototype for lab testing




Image of the electrospray in the cone-jet operational mode (34 gauge needle, 10 μl/min, 11 kV)

Progress – Data for CFD Model Experimental Validation

Stage of the Project: Early-

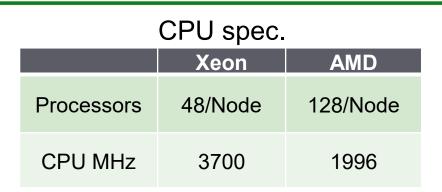
RH measured with chilled mirror dew point meters and in-situ calibrated RDTs and thermocouples Small offsets in humidity are accounted for and eliminated before each test Dry-bulb air temperature variation before and after electrospray is less than 0.3°C

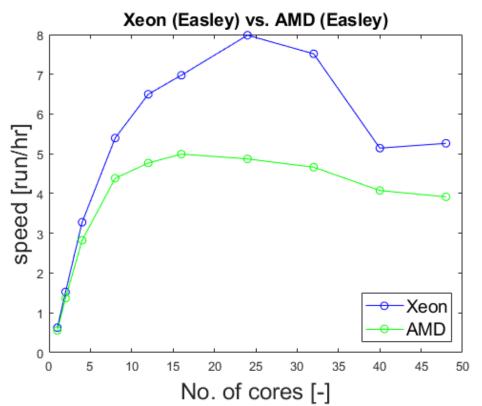
Dehumidification [%]:
$$\Delta RH = RH_{inlet} - RH_{outlet}$$

Water flow rate:

S 5 μl/min

 \equiv 10 μ l/min


15 μl/min


Progress – CFD Model Computational Challenges

Number of sub- domains	Simulation runtime	Solution reconstruction runtime	With Script to extract only key metrics (seconds)
4	14 minutes	15 minutes	
8	8 minutes	1 hour	
16	6 minutes	1.6 hour	7 minutes

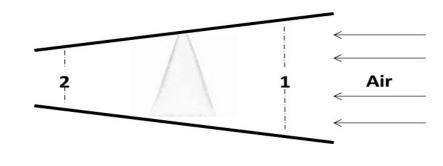
- Massive amount of simulation outputs
 - data management, transfer, storage, archive
- Computational time and costs
 - Reduce to few hours without compromising the accuracy and key information needed
- CFD based optimization framework for super-computing cluster
 - Sensitivity analysis
 - Optimization of prototype

Stakeholder Engagement

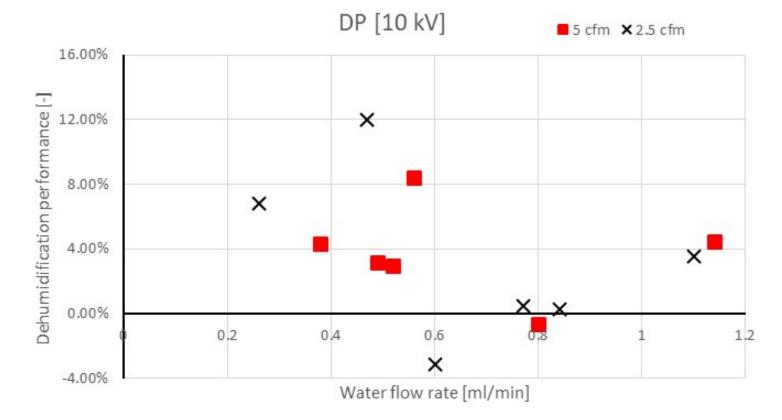
- EVFX works better in high humidity air → EVFX used on the outside air flows → dedicated outdoor air systems (DOAS) and exhaust recovery ventilators (ERV) are expected to be the immediate systems in which the proposed technology will be placed.
- Commercial buildings are well suited because
 - i. the level of technical expertise required for installing and servicing this potentially new technology are often already available for larger air handler systems
 - ii. even small percentages of energy savings by not adding any notable space are well received by the commercial buildings HVAC market.
- ACT is located in a 1,300,000 ft² business park that affords with plenty of space and infrastructure to expand as necessary.
 ACT recently expanded into an additional 10,000 ft² to support energy recovery and enclosure cooling product line
- JCI has already high voltage amplifiers for UV air quality control in their air handlers.
- It is likely that this new technology will be manufactured at JCI air handling systems facility. The new facility, named the "JCI Airside Center of Excellence (JCI-ACE)" is located in York, Pennsylvania and it includes 40,000-square-feet of office space and a 285,000-square-foot manufacturing area where standard and custom air-handling units are manufactured. It is also a training and support center for JCI air handling products and currently hold 530 employees.
- Once the performances are validated, there are not any laws of physics that prevent scaling up further the technology for commercial building applications. There is no need to synthetize new materials or develop large stacks of membranes for larger systems.
- At any rate, ACT assesses manufacturability at scale, and JCI investigate system integration in existing air handlers and market penetration

Example of this type of assessment during current FY period:

for large flow rates, the millions of electro-needles could be replace by hundreds electro-nozzles and without using carbon dioxide in the electrospray.


Stakeholder Engagement

Feasibility Tests of a commercially available nozzle converted to an electro-nozzle


Dehumidification performance [DP]

$$\mathsf{DP} = \frac{w_2 - w_2^*}{w_2 - w_1}$$

Preliminary Results at 10 kV

• An air atomizing-nozzle is placed in a strong electrical field.

Remaining Project Work

Stage of the Project: Early-

Year 1: Develop New Electrospray Emitter (completed) Year 2: Test First EVFX Prototype and Optimization Year 3: Develop EVFX Technology Demo Unit

Start Date: April 1, 2020

✓ Modeled vapor capturing process by electrostatic water droplets (completed)

- ✓ Designing proof-of-concept EVFX prototype for low air flow rates (5 cfm) (next month)
- Manufacturing of EVFX prototype and assembly of the new electrospray (by end-of-year)
- Instrumentation of EVFX prototype and calibration (Spring 2022)
- Proof-of-concept tests for 5 cfm; achieve 5% Dehumidification (Summer 2022)
- Optimization and scale up to 200 cfm
- Technology Demo Unit
- Scale up analysis and integration with air handlers for commercial building applications

Thank You

Auburn University Lorenzo Cremaschi Email: Izc0047@auburn.edu

REFERENCE SLIDES

Conference Papers

- Morcelli, S., and Cremaschi, L., 2021, Modeling of Enhanced Air Dehumidification through Electrically Charged Vapor Capturing Electrostatic Droplets, *Proc. of the 5-6th Thermal and Fluids Engineering Conference of the American Society of Thermal and Fluid Engineers* (ASTFE), New Orleans, LA, USA, now virtual, May 26-28, 2021
- Morcelli, S., and Cremaschi, L., 2021, Analysis of New Data of Electro-static Assisted Air Dehumidification Processes, *Proc. of the 18th International Air Conditioning and Refrigeration Conference*, Purdue University, West Lafayette, IN, USA, now virtual conference, May 23-27, 2021

Patent Application

2020, Electrospray Vortical Flow Exchanger, US Patent App. 17/034344 (Serial number for the Patent Cooperation Treaty case is PCT/US2020/53038). Inventor: Cremaschi L.

Project Budget

Project Budget:

- Total DOE: \$1,457,470
- Total Cost Share: \$372,479

Variances: 6-months no-cost time extension was approved, resulting on the project budget period year 1 from April 1, 2020 to September 30, 2021.

Cost to Date: 30% of Project Budget (\$441,002) has been expended to date (as of July 15, 2021)

Additional Funding: Not needed at this time.

Budget History										
April 20 FY 2020		end Sept	2021 t. 30 2021 rrent)	FY 2 end Sept. (plan		FY 2023 end Sep. 30 2023 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
NA	NA	\$563,093	\$141,581	\$452,033	\$117,449	\$442,344	\$113,449			

Project Plan and Schedule

Task		Year			20	20						2	202	1		<u> </u>					2	202	2							20	23			
		MM	4	56	78	9	10	11 12	2 1	2	34	5	67	78	91	10 11 1	2	2	3	4	5	67	78	9	10	11 1	2 1	2	3	4 5	56	7	89	
No.	Description	Quarter		2	3			4		1		2		3		4		1			2		3			4		1		2	2		3	Milestone
1 Mod	el Electrostatic Droplets Growth	(LC)													S	Status					_													
1.1	Papers Review														C	comple	ete	d (1	00%	6)	L	_eg	enc	b										
1.2	Develop electrospray engineering	model	L												С	comple	ete	d (1	00%	6)		:	Ta	sk S	Sch	edu	led							
1.3	Model check against literature stu	dies		L.											С	comple	ete	d (1	00%	6)	l		Ta	sk [Сер	enc	ce							
1.4	Summarize findings				4	•	М	1.4							С	comple	ete	d (1	00%	6)	•	♦ 1	Pro	ojec	t M	liles	stone	;						M-1.4
2 CFD	numerical multi-phase flow ana	ysis (ACT)																		h	M. :	Go	/Nc	o-G	o D	ecisi	ion	Pc	int				
2.1	Upgrade ACT current CFD mode														0	ongoin	ng (75%	6)															
2.2	Run CFD simulations									L					0	ongoin	ng (75%	6)															
2.3	Summarize findings													♦ I	<u>M</u> 2.	.3 <mark>ong</mark>	oir	ig (7	75%)														M 2.3
3 Desi	gn of experiments (SC)																																	
3.1	Insensitive design and operating	parameters	\$												0	ongoin	ng (′ 50%	6)															
3.2	Quantitative sensitivity to design a	and operati	ng p	baram	eters	;				Ļ					0	ongoin	ng (25%	6)															
3.3	Design test matrix											Ļ			<u>♦</u> N	M 3.3 <mark>0</mark>	ong	oing	g (5	0%)														M 3.3
4 Desi	gn and Fabrication electrospray	and mesh	col	lecto	r (LC	;)																												
4.1	Review current electrospray desig	ns													С	comple	ete	d (1	00%	6)														
4.2	Design of new electrospray-						-								С	comple	ete	d (1	00%	6)														
4.3	Feasiblity analysis of new design	(ACT & JC	I)												0	ongoin	ng (75%	6)															
4.4	Construct lab breadboard setup t	o mimic ne	w el	ectros	spray					L	•				0	ongoin	ng (75%	6)															
4.5	Test lab breadboard setup electro	spray									L					🔹 💖 G	<u>SN(</u>	<u>3 4.</u>	5	on g	goir	ng (75%	6)										GNG 4.5

Future work

5 Rev	vision of the Design		
5.1	Revision of the electrospray and mesh collector design		
5.2	Summarize findings and Write interim report		
6 3D I	Printing of first lab setup for up to 5 cfm (ACT)		
6.1	3D printing first lab set up		
6.2	Integrate new electrospray emitter		
6.3	Test for hydrodynamic performance and at ambient conditions		
6.4	Summarize findings	♦ M 6.4	M 6.4
7 Pro	of-of-concept Tests at 5 cfm flow rate (LC)		
7.1	Update test rig		
7.2	Proof-of-concept tests at high and medium humidity, low/medium/high voltage		
7.3	Data analysis and repeat tests		
7.4	Summarize findings and Write interim report	♦ M 7.4	M 7.4