
AFDD: Test Datasets and Prioritization Methods

Lawrence Berkeley National Laboratory Jessica Granderson (PI), Guanjing Lin jgranderson@lbl.gov; gjlin@lbl.gov

Project Summary

Timeline:

Start date: October 1, 2019

Planned end date: Sept 30, 2022

Key Milestones

- 1. FDD dataset curation and validation; FY20
- 2. Fault prioritization state of art and gaps; FY21
- 3. FDD dataset benchmark case studies; FY22

Budget:

Total Project \$ to Date:

- DOE: \$1.2 million
- Cost Share: \$0

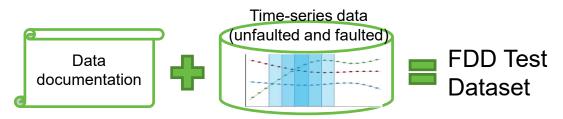
Total Project \$:

- DOE: \$1.775 million
- Cost Share: \$0

Key Partners:

Drexel University

Pacific Northwest National Laboratory


National Renewable Energy Laboratory

Oak Ridge National Laboratory

11 Technical Advisory Group Members


Project Outcome:

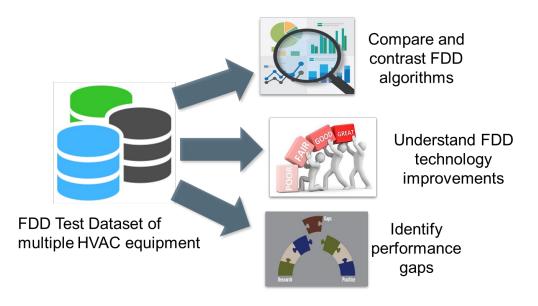
 Primary: Create world's largest publicly available dataset for evaluating fault detection and diagnostics (FDD) algorithm accuracy

• Secondary: Provide guidance for FDD users and recommendations for future R&D to enhance fault prioritization

Team

Multi-organizational collaboration

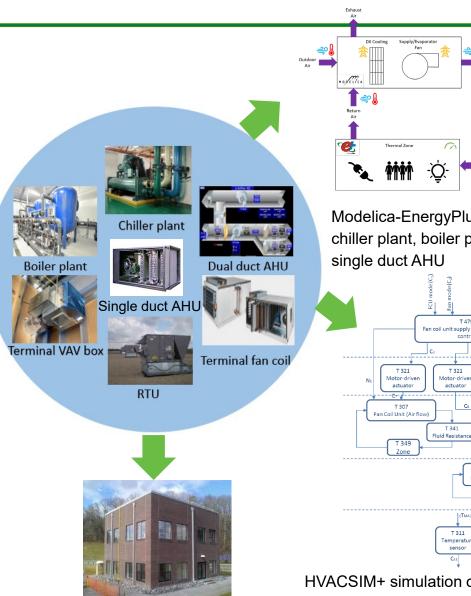
- Leading-edge users using FDD to enable ~9% portfolio savings¹
- As data science comes to buildings, explosion of interest in advanced analytics approaches
 - 100s of peer reviewed articles, continuous development
- ~\$6B building analytics market, one of the fastest growing markets
- Users, researchers have limited common test datasets to evaluate performance, train/test solutions
 - What is good, are we improving, where do we focus our efforts?
- Although leading-edge users derive strong value from FDD technology, they lack robust techniques to manage large volumes of faults



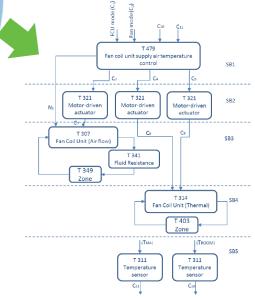
1. Kramer H, Lin G, Curtin C, Crowe E, Granderson J, Proving the Business Case for Building Analytics, Better Buildings, U.S. Department of Energy, 2020

Project Goals

- Create the world's largest publicly available test dataset for FDD performance evaluation to facilitate innovations
 - Time series of HVAC operational data (e.g. temp., pressure, control signal) under a diversity of operating conditions, combined information on the presence and absence of faults and associated intensity
 - Span a large number of commercial-building HVAC systems
- Provide guidance for FDD users to prioritize faults, and recommendations for future R&D for analytical solutions



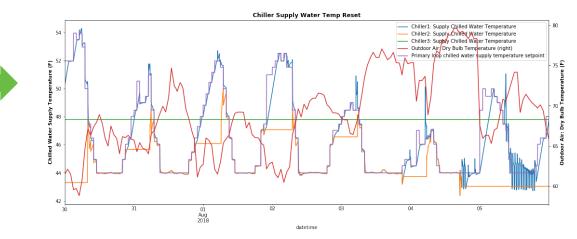
Approach


FDD test dataset

- Develop data curation plan ۲
 - 7 HVAC systems/equipment
 - Each system 5-15 common faults, 4 severities
 - Simulation data captures a full 365 days of operation, 1-min interval

Lab experiments of RTU

Modelica-EnergyPlus simulation of chiller plant, boiler plant, RTU and



HVACSIM+ simulation of dual duct AHU, fan coil, and terminal VAV box

Approach

FDD test dataset

- Develop data curation plan
- Develop data validation and ground truth assessment protocols
 - System info and control sequence documentation
 - Data format and quality
 - Data naming convention, time interval, completeness, data limit, missing data
 - Fault-free ground truth validation
 - System operates following control sequence
 - Measurements meet setpoints
 - Faulty ground truth validation
 - Check against expected fault symptoms defined from literature review

Fault-free validation: supply temp is higher at low outside air temp, and vice-versa, temp meets setpoints

FDD test dataset

- Develop data curation plan
- Develop data validation and ground truth assessment protocols
- Synthesize and validate dataset across all contributors

	Input Sc				
Fault Type		Fault Intensity	Method of Fault Imposition		
oom Temperature Sensor bias		-4 °C, -2 °C, +2 °C, +4 °C	Add bias to sensor output		
Reheat valve	Stuck	Full Open	Assign a fixed simulated controlled device		
		Full Closed	position		
		Partial Open 20%, 50%, 80%			
	Leaking	20%, 50%, 80% of the max flow	Assign a fixed simulated controlled device minimum position		
VAV damper	Stuck	Full Open	Assign a fixed simulated controlled device		
		Full Closed	position		
		Partial Open 20%, 50%, 80%			
Room air temperature control sequence unstable		100 to 0.1	Decrease proportional band (increase controller gain kp) until unstable		
Room VAV damper control unstable		9.99 to 99999	Increase controller gain kp until unstable		
Unfaulted			NA		

FDD Test Dataset

Example faulted or unfaulted test cases of terminal VAV box

FDD test dataset

- Develop data curation plan
- Develop data validation and ground truth assessment protocols
- Synthesize and validate dataset across all contributors
- Conduct benchmark case studies
 - Verify the efficacy of the test dataset
 - Inform the architecture/infrastructure needs for public release of the dataset
 - Illustrate the types of insights gained from use of the dataset
- Make available to public for ongoing use

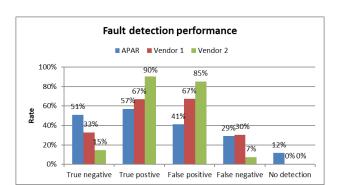
Approach

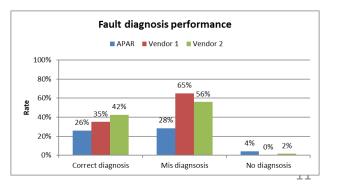
Scope of fault prioritization study

- Literature review
 - Targeted system, equipment, and faults
 - Fault prioritization categories and approaches
 - Research needs and knowledge gaps
- FDD tech. developers and users survey
 - Current state of art
 - Display of prioritization results in FDD tool
 - Fault prioritization categories and metrics
 - Fault prioritization process in facility or portfolio
 - Research needs and knowledge gaps

1. Technical article [Research audience]

2. Best practice heuristics [FDD user audience]




3. Future R&D recs for analytical methods [Labs/DOE audience]

Impact

- Improve the development and validation of FDD technology
- Promote long-term technical progress to improve effectiveness

With 9% savings¹, FDD adoption by 10% of eligible buildings² can result in 54TBtu³ annual source energy savings (\$0.5b)³

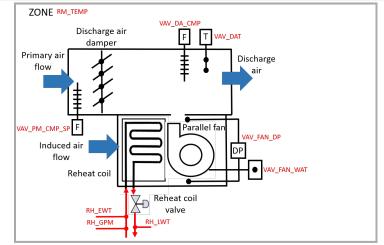
DOE Goal: Triple the energy efficiency and demand flexibility of the buildings sector by 2030 relative to 2020 levels.

 ¹ Median savings for FDD users, based on Smart Energy Analytics Campaign
² Commercial buildings >100,000 sq.ft.
³ Based on CBECS data

Progress: FDD Test Dataset

• 6 systems, in total 76151 day-long test cases

System		No. of day-long test cases N	Data Type	Contributor		
Dual-duct air handler unit		20075	15			
Terminal fan coil		17520	17	HVACSIM+		
Fan-Powered Terminal VAV box	Parallel	10950	10	simulation	Drexel University	
	Series	10950	10	-		
Chiller plant		10220	10	Modelica-		
Boiler plant		6205	5	EnergyPlus	PNNL	
Rooftop unit (RTU)		63	4	simulation	NREL	
RTU		168	3	Experiments	ORNL	


Progress: FDD Test Dataset Documentation

Data documentation in pdf

- An overview of the data set
- Building and system information
 - System type and diagram
 - Control sequences
 - Data points
- Input scenarios for faulted and fault-free conditions
 - Fault types
 - Fault intensities
 - Method of fault imposition
 - Fault occurred time

Data stored in Google Drive

- Each dataset is provided in a set of the csv files
- Each file represents a fault with a specific intensity

Data Point Name Description			
Room Temperature	°F		
Room Cooling Setpoint	°F		
Room Heating Setpoint	°F		
Reheating Coil Valve Position	%Open		
Reheating Coil Valve Position (command)	%Open		
Reheating Coil Water Flow Rate	GPM		
Reheating Coil Entering Water Temperature	°F		
Reheating Coil Leaving Water Temperature	°F		
VAV Discharge Air Temperature	°F		
VAV Damper Position	%Open		
VAV Primary Air Flow Rate Setpoint	CFM		
VAV Primary Air Flow Rate	CFM		
VAV Fan Status (On/Off)			
VAV Fan Differential Pressure	in. WG		
VAV Fan Power	Watts		
	Room TemperatureRoom Cooling SetpointRoom Heating SetpointReheating Coil Valve PositionReheating Coil Valve Position (command)Reheating Coil Water Flow RateReheating Coil Entering Water TemperatureReheating Coil Leaving Water TemperatureVAV Discharge Air TemperatureVAV Damper PositionVAV Primary Air Flow Rate SetpointVAV Fan Status (On/Off)VAV Fan Differential Pressure		

Diagram and data points summary of parallel flow fan powered terminal air unit

Progress: Scope of Fault Prioritization Study

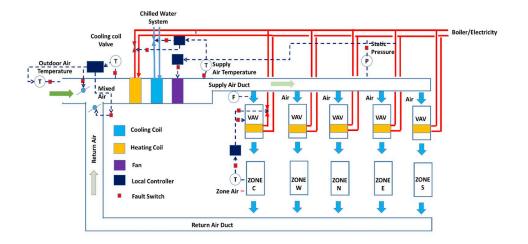
- Reviewed 41 publications and interviewed 8 FDD tech. providers and users
- Prioritization is an important research topic, key to overcome data overload and to encourage action
- Common prioritization categories; energy, comfort, maintenance impacts and fault duration

Interviewed FDD tech. providers and users

- Customizable prioritization to meet the needs of different user groups (e.g. facility O&M team, facility engineers, energy manager, etc.)
- Knowledge gaps/research needs
 - Provide a database of repair costs/labor hrs
 - Improve rules for integration of multiple faults
 - Provide dynamic, customized energy impact results for a specific building or equipment

Stakeholder Engagement

- Progress recap:
 - FDD test dataset curation and validation across 6 systems
 - Literature review and stakeholder survey of fault prioritization
 - Engaged stakeholder TAG with deep subject matter expertise



Industry Technical Advisory Group

 Engaged and contributed to international research collaboration Annex 81 project "Data-Driven Smart Buildings".

Remaining Project Work: FDD Test Data Creation

- Simulated data set with Modelica-EnergyPlus model
 - Multi-zone AHU-VAV system with typical controls configuration
- ORNL experimental data set
 - ORNL Flexible Research Platform
 - Summer conditions
- Merge with existing data sets to expand scope of coverage

Remaining Project Work: Public Availability

- Finalize fault prioritization scoping study outcomes
- Work with FDD developers and researchers (2 tech. providers, 4 researchers from U.S., Australia, and Italy) to generate benchmark case studies
- Disseminate FDD test data set for wide industry awareness and ongoing use
 - Where is data set stored, how is it formatted, how is it accessed?
 - What infrastructure facilitates use and how is it maintained?

Data repo, Q&A forum

Thank You

Lawrence Berkeley National Laboratory

Building Technology and Urban Systems Division

Jessica Granderson Deputy Director for Research jgranderson@lbl.gov Guanjing Lin Principle Scientific Engineering Associate gjlin@lbl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$600K/yr FY20-FY21, \$575k FY22 Variances: No variances from original planned budget Cost to Date: Spending on track, \$514K of \$600K spent through July 2021

Budget History								
Oct 1, 2019 – FY 2020 (past)		FY 2021 (current)		FY 2022 – Sep 30, 2022 (planned)				
DOE	Cost-share DOE		Cost-share	DOE	Cost-share			
\$600k	0	\$600k	0	\$575k	0			

Project Plan and Schedule

Project Schedule									
Project Start: October 1, 2019		Complete	d work						
Project End: September 30, 2022		Active Tas	sk (in progre	ess work)					
		Milestone/Deliverable (Actual)							
	Status	FY 2020			FY 2021				
				_			1		
		Q1 (Oct-Dec)	(Jan-Mar)	(Apr-Jun)	(Jul-Sep)	Q1 (Oct-Dec)	(Jan-Mar)	(Apr-Jun)	Q4 (Jul-Sep)
		OCt O	Jan	Apr		OCT	Jan	Apr	
Task		51 (Q2 (Q3 (Q4 (57	Q2 (g3 ((.) .) .)
Task Past work		0	0	0	0	0	0	0	0
Past work									1
FY20 Q1: Based on engineering knowledge of system behavior in the presence of each									
fault type, develop data validation and ground truth assessment protocols and									
demonstrate them on a subset of data.	Completed								
FY20 Q2:Initial data validity and quality check	Completed								
FY20 Q3 GNG decision: Verify that 75% of data collected to date have valid ground	completeu								
truth and usable measurement points for FDD algorithms to run against.	Completed								
FY20 Q4: Synthesize dataset across all contributors, covering 6 systems, and >45,000	Completeu								
test cases; merge with the data from Phase I.	Completed								
Current work	Completeu								
FY21 Q1:Hold initial conversations with 4-7 FDD developers to line up interest to									
participate in case studies.	Completed								
	Completeu								
FY21 Q2:Prepare an article documenting the expanded dataset curation and validation									
(from FY19&FY20 Q1); summarize FDD prioritization methods from literature review.	Completed								
FY21 Q3:Document state the of commercial FDD prioritization methods based on									
discussion with 7-15 FDD users and developers; identify gaps and needs associated									
with the current state of the art	Completed								
FY21 Q4:For each partner contributor, document Y3 data curation plan including:									
facility/model descriptions; fault types, severities, and conditions; and methods to	Ongoing								
FY21 Q4:GNG decision: Case study progress and use as additional data validity and									
quality check	Ongoing								