Ammonia Utilization in Internal Combustion Engines

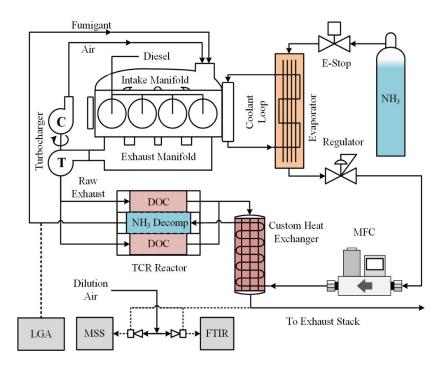
Will Northrop, Associate Professor, Mechanical Engineering Ammonia to H2@Scale Utilization Panel

May 7, 2021

Ammonia IC Engine Overview

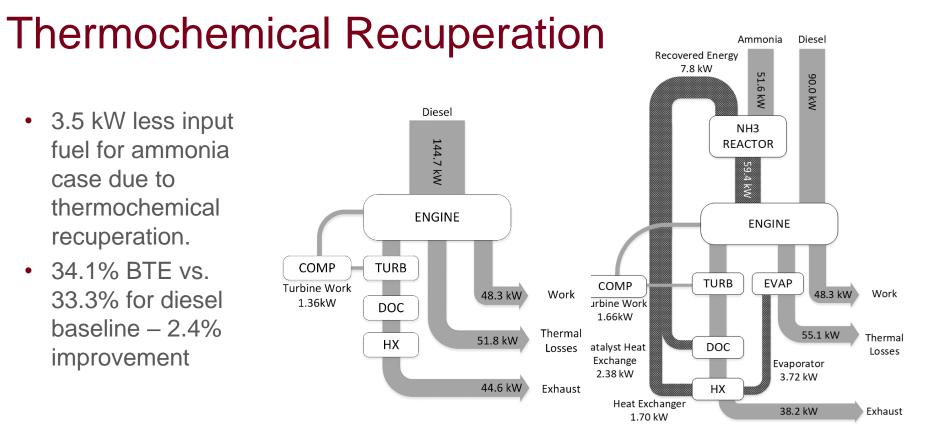
Compression Ignition

- 100% NH₃ requires high compression ratio (CR > 35:1)
- Dual-fuel strategies
- <10% Pilot diesel injection
- Multiple injection strategies for emissions reduction

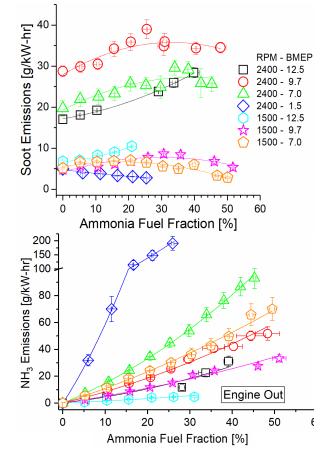

Spark Ignition

- Laminar flame speed low for ammonia alone
- Blending with hydrocarbon fuel
- H₂-NH₃ blends from cracking are promising
- Reduced volumetric efficiency
- High NO_X and unburned ammonia emissions N_2O
- Catalytic aftertreatment is expensive benefit, unburned NH₃ as reductant for SCR for lean engines

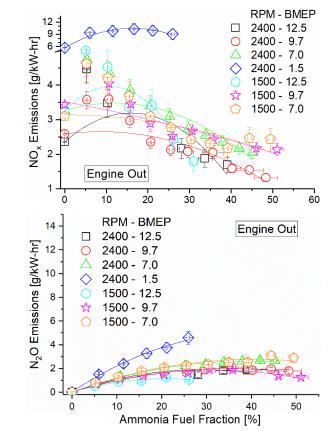
Case Study – H₂-Enhanced Dual Fuel Diesel Engine



Kane, S. P., Zarling, D., and Northrop, W. F., ASME ICEF 2019. https://doi.org/10.1115/ICEF2019-7241


Kane, S. P., Zarling, D., and Northrop, W. F., ASME ICEF 2019. https://doi.org/10.1115/ICEF2019-7241

Dual-Fuel Diesel Emissions


- Soot emissions increase at high speed due to oxygen displacement and lower temperature combustion temperatures
- Unburned NH₃ highest increase for for high-speed low load case – slow kinetics at low combustion temperature

Dual-Fuel Diesel Emissions

- Engine-out NO_X decreases at high ammonia fuel fraction
- N₂O emissions order of magnitude higher than diesel baseline
- Oxidation catalyst produces NO_X, N₂O due to unburned NH₃ oxidation (not shown in plots)

IC Engine R&D Topics

- NH₃ low reactivity and flame speed must be enhanced
- Fundamental combustion studies for refining chemical mechanisms and NH₃ flames
- Alternative ignition systems for SI
- Closed cycle liquid injection to reduce volumetric losses
- Nitrogen oxides and unburned NH₃ aftertreatment
- Thermochemical recuperation to increase engine efficiency and provide H₂ source – 100% NH₃ engine
- Non-PM based catalysts
- Soot and nitrogen-derived particle emissions from ammonia engine combustion

Ammonia-H₂ Counterflow Flame at UMN MERL

Thank You!

Contact: Will Northrop Associate Professor Director, T.E. Murphy Engine Research Lab 2811 Weeks Ave. SE, Minneapolis wnorthro@umn.edu (612) 625 6854

