DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Low Carbon Hydrocarbon Fuels From Industrial Off Gas

March 25, 2021 Systems Development and Integration

> Dr. Laurel Harmon LanzaTech, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Original Project Goal and Scope

- ✓ Produce hydrocarbon fuels from qualifying feedstocks
- \checkmark At a rate equal to or greater than 50 DMT/day cellulosic feedstock equivalent
- \checkmark Where the majority of the product is a biofuel
- ✓ And that products qualify as advanced or cellulosic under the RFS

Original Project Goal

Demonstrate production of jet and diesel from industrial waste gases via gas fermentation to ethanol intermediate followed by conversion of ethanol to jet CarbonSmart™

Gas Fermentation Operating Commercially

20N Gallons Ethanol Produced 100,000 metric tons CO₂ avoided

CarbonSmart[™]

Revised Goal and Scope

Revised Project Goal

Accelerate commercialization of ethanol-to-jet technology by building a standalone Alcohol-to-Jet pre-commercial demonstration facility to produce sustainable aviation fuel (SAF) and diesel

CarbonSmart[™]

Revised Project Objectives

Objectives

• Design, build, and operate 10 million gallon per year facility to produce jet and diesel from ethanol intermediates

LanzaTeo

- Validate technology from multiple ethanol feedstocks and inform next stage of scale up
- Deliver first commercially-relevant quantities of jet and diesel from ethanol

Key Project Outcomes

- Demonstrate production of jet and diesel qualifying as Advanced Biofuel
- Provide continuous operating data to validate technology and inform commercial design
- Produce first commercially-relevant quantities of jet and diesel from ethanol
- Validate business model, cost model, and distributed supply chain model

Why is this important?

Mandated SAF Demand for **\$50B+** by 2030

New technologies and expanded feedstock pool are critical to meet projected SAF demand

International Mandates¹

16B gals by 2030

National Mandates²

France	5% in 2030	130m gals
Sweden	30% in 2030	100m gals
Finland	30% in 2030	90m gals
Norway	30% in 2030	90m gals
Spain	2% in 2025	50m gals

Industry Commitments

UNITED Net zero CO₂ by 2050

DELTA \$1B committed to carbon mitigation

LanzaTec

Estimated projection based on CORSIA mandates
 Anticipated mandates applied to 2019 jet fuel consumption

1 - Management

LanzaTech spun out LanzaJet in 2020

LanzaTech

LanzaJet & Freedom Pines Fuels

LanzaJet formed by LanzaTech to commercialize LanzaJet[™] Alcohol-to-Jet technology

Freedom Pines Fuels, a LanzaJet subsidiary, is the special-purpose vehicle for this project

Current Project Team

*Announced July 2020

https://www.technipfmc.com/en/media/news/2020/07/technipfmc-s-hummingbird-ethylene-technologyselected-by-lanzatech-for-lanzajet-sustainable-aviation-fuel-biorefinery/

```
LanzaTech
```

Freedom Pines Fuels Organization


```
LanzaTech
```

Project Risks

<u>Risks</u>

- Technical risk first-of-a-kind demonstration of ethanol-to-jet technology at this scale
- Financing risk raising equity and debt in an economic downturn
- Feedstock supply securing quantities that meet offtaker requirements
- Offtake agreements given pandemic impact on airlines

Mitigation

- Technology validated at multiple prior scales; strong technology partners
- Equity raised in advance; pursuing USDA Loan Guarantee
- Feedstock secured for demonstration; letters of intent with multiple suppliers for production
- Offtake agreements in place

2 - Approach

Why Ethanol-Based Alcohol-to-Jet?

Jet range hydrocarbons (C_8 to C_{16}) selectively built

How did we get here - recycling waste carbon to ethanol

Starting 2005: developed platform for low-cost ethanol and other chemicalsCarbonSmart™>100,000 hours of operation at multiple pilot, demo facilities
CarbonSmart™LanzaTech

Global ethanol platform build out

How did we get here – ethanol to sustainable aviation fuel

LanzaTech-PNNL Cost-Shared Competitive Awards

ATJ process intensification (TCF funding)

```
LanzaTech
```

Key Challenges

Technology and Cost Risks

- Technology risks addressed by prior scale data
- Unit operations well-understood from refining and petrochemicals
- Ethanol-to-ethylene partner, Technip, with global experience in commercial ethylene plants
- Cost risk minimized through firm, fixed-price agreement for ISBL

Business Risks

- · Feedstock supply and cost depend upon offtaker requirements; suppliers identified
- Offtake risks addressed by existing commitments
- Financing risk reduced by advanced commitment of equity and USDA Loan Guarantee (in process)

Policy and Regulatory Risks

- Existing policies support SAF and diesel products
- Registration of RFS pathways initiated
- RIN category and LCFS credits dependent on ethanol source

Risks systematically reduced at each stage of project development

High-Level Phase 2 Structure and Go/No-go Points

Approval for Phase 2	Budget Period 3	CD-4 Factory Acceptance Test	Budget Period 4 (includes 500 hrs. Demo)
	20 months		16 months
	Engineering and factory acceptance testing of all modules at CD-4 review.		Module shipping, onsite interconnection
	Site preparation and utilities		Commissioning, ramp-up, integrated demonstration

Phase 2 goal is to demonstrate a fully integrated capability to selectively produce jet fuel and diesel – from a variety of ethanol heritages – at rates above and beyond that required by the PD2B3 FOA

CarbonSmart™

Scope of Phase 2 tasks within PD2B3

	CI Factory Acceptance Tes)-4 st and DOE IE Validation	Budget Period 4	Inform design and construction of commercial ATJ
Budget Period 3		ín (in	cludes 500 hrs. Demo)	facilities
20 months			16 months	
 Detailed and final engineering for ISBL & OSBL ATJ process equipment acceptance* OSBL engineering and site prep Staffing for operations; operations and maintenance training Permitting and regulatory compliance 		 ATJ module interconne Start-up ar Fuel produ 500 hour ir Updated L0 Final repor status 	e shipping, reassembly, action, and pre-commissioning ad commissioning ction ramp-up ntegrated demo CA and TEA rt detailing technical and comm	ercial
* Fabrication & assembly are out of DOE scope		1		

3 - Impact

Ethanol-based ATJ offers a new source for Sustainable Aviation Fuel meeting Renewable Fuel Standard Advanced or Cellulosic Biofuels criteria

Units (g-CO ₂ e/MJ of ATJ-SPK or ATJ-SPD)	Corn Starch Ethanol	Corn Stover Ethanol	Corn Kernel Fiber Ethanol	Waste Gas Ethanol (China)	Sugarcane Ethanol (Brazil)
Ethanol Feedstock					
Ethanol Transport					
LanzaJet™ ATJ Process	64.7	3.5	36.1	45.2	8.3 – 36.9
ATJ-SPK/SPD Transport					
ATJ-SPK/SPD Distribution					
Emissions Reduction over	20%	06%	619/	E19/	61 01%
Fossil Baseline, %	50%	90%	01%	51%	01 - 91%

Lifecycle GHG Emissions for LanzaJet[™] ATJ

GHG Emissions of LanzaJet™ ATJ

- GHG emissions dominated by ethanol feedstock
- ATJ-SPK from corn stover ethanol and corn kernel fiber ethanol both qualify as Cellulosic Biofuels (≥ 60% reduction)
- ATJ-SPK from sugarcane ethanol would qualify as an Advanced Biofuel (≥50% reduction)
- ATJ-SPK from corn starch ethanol would qualify as a renewable fuel (≥20% reduction)
- ATJ-SPK from waste gas ethanol is not currently accepted under RFS but would qualify as an Advanced Biofuel with a 51% reduction

Further Opportunities to Reduce GHG Emissions

- <u>Solar Electricity</u>: Georgia regulations allow use of solar electricity "behind the meter", which satisfies RFS, LCFS requirements; site is wellsuited for solar installation.
- <u>Hydrogen produced by electrolysis</u>: small contribution actual impact depends on how solar energy accounting and delivery are handled
- <u>Biogas:</u> purchase agreement to offset natural gas use during steam generation
- Biogas largest emissions reduction but solar likely better economics.
- Options continue to be evaluated from LCA and economic perspectives

LanzaTech

Progress has triggered international initiatives

UK Department for Transport: Stage 1 Project Development

News story

Government funding boost for low carbon fuels development

First stage winners of the Future Fuels for Flight and Freight Competition announced.

Published 18 June 2018 From: Department for Transport and The Rt Hon Jesse Norman MP

https://www.gov.uk/government/news/government-funding-boost-for-low-carbon-fuels-development

Horizon 2020 Grant: Fuel via Low Carbon Integrated Technology from Ethanol (FLITE Consortium)

Building Europe's first of its kind Alcohol-to-Jet production plant

Sustainable aviation fuel produced from waste-based ethanol resources

The FLITE consortium, led by SkyNRG and with LanzaTech as the technology provider, will build the first-of-its-kind LanzaJetTM Alcohol to Jet (AtJ) facility. The facility will convert waste-based ethanol to sustainable aviation fuel (SAF) at a scale of over 30,000 tons/yr. The project received €20 million in grant funding from the EU H2020 programme and is a major milestone on the path to a net-zero emission for the aviation industry.

https://skynrg.com/press-releases/building-europes-first-of-its-kind-alcohol-to-jet-production-plant/

LanzaTech

LanzaJet business model accelerating commercial deployment

Ethanol-based Alcohol-to-Jet (ATJ): Potential for major global impact

Diverse Ethanol Technologies

Abundant, Regionally-Appropriate Resources

CarbonSmart[™]

Beyond greenhouse gas emissions

National Research Council Canada (NRC) testing showed >95% reduction in LanzaJet[™] SAF emission particles and resulting contrails

Comparison of Particle Number Emissions from In-Flight Aircraft Fueled with Jet A1, JP-5 and an Alcohol-to-Jet Fuel Blend Steven Tran, Anthony Brown, and Jason S. Olfert Energy & Fuels 2020 34 (6), 7218-7222; DOI: 10.1021/acs.energyfuels.0c00260

LanzaTech

4 – Progress and Outcomes

Summary of Phase 1 Accomplishments

Technical

- Implementation site selected
- Existing site services assessed
- FEL-3 (-5/+15%) ISBL and OSBL cost estimates complete.
- E2E technology vendor selected and validated.
- Modular EPC vendor selected.
- Initial data validated by Independent Engineer (IE)
- Two Independent Engineer reviews completed

Completed TEA of 10 MGY and 30 MGY facilities, including market and scale-up analyses.

Business

- Freedom to operate and access to all IP secured.
- Ethanol supply agreements for demonstration executed.
- Offtake agreements secured
- Cost share and 25% contingency commitments in place.

• Regulatory

- ATJ-SPK meets ASTM D7566 Annex A5 standard.
- Diesel meets ASTM D975 standard
- LCA validates qualification of fuels under RFS and LCFS.
- Ethanol-based ATJ is recognized under CORSIA.
- Environmental Assessment and Phase 1 Environmental Site Assessments complete

LanzaTech

Permit schedule complete

CD-3 Review Completed

Status of Phase 1 Deliverables from PD2B3 FOA

Deliverable	LanzaTech Rating
FEL-3 Design	Fully Complete
Business Plan	Fully Complete
Project Management Plan	Fully Complete
Risk Management Plan	Fully Complete
Regulatory Approval Strategy	Fully Complete
Life Cycle Analysis	Fully Complete
Technical and Financial Data Sheet	Fully Complete
Techno-economic Analysis	Fully Complete
Cost Share and Contingency	Fully Complete
NEPA Review	Awaiting final FONSI notice
Phase 2 Application Documents	In Progress

Freedom Pines Fuels: Project Site

CarbonSmart[™]

Site previously cleared and leveled – no new land disturbance or wetland impacts LanzaTech

Freedom Pines Fuels: Project-Related Staffing

Freedom Pines Fuels

- Key **project-specific positions** being filled in line with project schedule
- Plant Manager 29 years of industry experience in environmental, chemicals and petroleum refining
- **Project Manager** 16 years oil and gas company experience
- Senior Plant Process Engineer 25 years of industry experience in high-hazard agricultural chemicals manufacturing
- **Process Engineer** extensive refinery experience, specializing in Process Safety

LanzaTech/LanzaJet

- LanzaTech PD2B3 Project team
- LanzaJet CEO, executive, and administrative team hired
- Expanded process engineering and operations staff (LanzaTech, LanzaJet)
- Hired dedicated business development leads (LanzaTech, LanzaJet)
- Director, Process Engineering (LanzaJet) 20+ years of engineering experience in process engineering, design engineering, technology and capital projects execution

LanzaTe

Freedom Pines Fuels: Environmental Status

Environmental Assessment Phase 1 Environment Site Assessment

- Environmental Assessment completed and approved by DOE and USDA NEPA Specialists
- Notice published and public comment period ended Feb
- Finding of No Significant Impact (FONSI) completed by USDA, being finalized by DOE
- Phase 1 Environmental Site Assessment (ESA) conducted to assess prior environmental impacts and potential costs for remediation
- Phase 1 ESA concluded no *Recognized Environmental Concerns* at the site and therefore no Phase 2 ESA is required

Environmental Permitting

- Site originally permitted for Range Fuels
- Range Fuels' permitted limits exceed needs of FPF
- Permit consultants selected; initiating work in March
- Weighing pros and cons of amending current permit vs. acquiring new permit
- Includes air, water, and Spill Prevention, Control, and Countermeasure (SPCC)

lanzaTe

• No critical path impacts

Freedom Pines Fuels: Engineering Status

Inside Battery Limits (ISBL)

- ISBL engineering continuing
- HAZOP in process (March 22 April 16)
- Initiating
 - Frame Fabrication Design
 - Isometrics
 - Control Design
- Ongoing schedule recovery options

Outside Battery Limits (OSBL)

- Detailed utilities calculations enable OSBL work to begin
- Front-End Engineering Design (FEED) contractor selection complete
- Evaluating contracting strategy (EPC or EPCM)
- Target execution of FEED costreimbursable contract end March
- In parallel, developing design basis documents for OSBL systems

CarbonSmart™

Summary

Summary

- **1 Environmental reviews complete** and FONSI in process
- 2 **Funding advanced** with equity secured and late stages of Phase 2 USDA Loan Guarantee
- **3 DOE Phase 2 negotiation** for \$14M investment in progress
- 4 **ISBL agreement executed** and work kicked-off in January
- **5 OSBL FEED** contractor evaluation complete, initiate work in April
- **6 Ethanol sourcing and fuel registration** ongoing in conjunction with offtake agreements
- **7 Staffing underway** to meet project timeline

Quad Chart Overview

Timeline

- 1/15/2017
- 12/31/2020 (pending Phase 2 approval)

	FY20 Costed	Total Award
DOE Funding	\$404,441	\$4,994,107*
Project Cost Share	\$453,655	\$5,266,115

Project Goal

• Design, build, and operate 10 million gpy facility to produce jet and diesel from ethanol intermediates

End of Project Milestone

- Demonstrate 500 hours of stable operation producing jet and diesel from qualified ethanol intermediates
- Demonstrate products meet RFS2 requirements for Advanced or Cellulosic biofuels

Project Partners

- LanzaJet
- PNNL, Technip (Michigan Tech)
- Zeton, EPC

Funding Mechanism

DE-FOA-0001232: Project Development for Pilot and Demonstration Scale Manufacturing of Biofuels, Bioproducts, and Biopower (PD2B3) Topic Area 2

Additional Slides

Responses to Reviewers Comments

LanzaTech response to reviewer comments – Technical

Weakness from 2019 DOE Review	LanzaTech Response
 H₂ requirement & Carbon intensity: Concern that diversion of current hydrogen use within refineries would impact fossil operations Most current H₂ sources are from fossil operations 	 Project cost includes H₂ Only 1 H₂ per molecule hydrocarbon (mono olefins) - 1/3 to 1/6 of the H₂ required by HEFA or FT Minor LCA impact; all LCA to-date assume H₂ from SMR. Green H₂ will further reduce carbon intensity
 Carbon conversion efficiency: Lacking a discussion of overall carbon conversion efficiency Lacking LCA discussion over the total process; ie, not certain what a 75% in GHG refers to 	 Overall carbon efficiency is 98%. Since LT ATJ uses ethanol as feedstock, the reduction in carbon intensity of the final SPK SAF is largely determined by ethanol feedstock 75% was for ethanol and ATJ production exclusive of transportation; results presented here include transportation of feedstock and product
 Go/No-go: Go/no-go decision still pending No cost extension pending 	 The project has successfully passed two Go/No-go decisions (Validation and CD-3 review) The project received a no-cost extension to 12/31/2020; next extension will be based on approval for Phase 2.

LanzaTech response to reviewer comments – Economic

Weakness from 2019 DOE Review	LanzaTech Response
 Ethanol supply: Concerns on identifying sources for sufficient quantities of ethanol Reliance on cellulosic ethanol feedstock will limit initial adoption 	 Ethanol for demonstration secured from domestic corn-kernel fiber producers and LT China plant LanzaJet is in negotiations with multiple suppliers for cellulosic and low-CI ethanol for mid-term operations LanzaTech is engaged with others to develop cellulosic ethanol projects based on gasification & fermentation Multiple global ethanol traders are bidding to be ethanol supplier
 Offtake: May be underestimating time and complexity for completing agreements 	 All offtake has been spoken for as noted in slides Additional offtakers are negotiating for a share of offtake from current commitments Specifics of offtake agreements are confidential.
 RIN, LCFS credit requirement: Did not address cost point for commercialization in terms of meeting \$/ Need RINs and LCFS to be successful 	 "Credits" from low-carbon ethanol are included in ethanol feedstock price; The fully-loaded cost is below \$3/gge, net of incentives Pricing model has been accepted by off-takers

CarbonSmart™

Publications, Patents, Presentations, Awards, and Commercialization

Awards and Publication

PNNL and LanzaTech

• 2019 "Excellence in Technology Transfer Award" from Federal Laboratories Consortium for Technology Transfer (FLC)

PNNL and LanzaTech

• 2020 Innovation Research Interchange (IRI) Achievement Award

Comparison of Particle Number Emissions from In-Flight Aircraft Fueled with Jet A1, JP-5 and an Alcohol-to-Jet Fuel Blend Steven Tran, Anthony Brown, and Jason S. Olfert Energy & Fuels 2020 34 (6), 7218-7222; DOI:10.1021/acs.energyfuels.0c00260

