Advancing Synergistic Waste Utilization as Biofuels Feedstocks: Preprocessing, Coproducts, and Sustainability Workshop DOE-BETO

Utilization of waste PLA

and assessment of its environmental sustainability

Shakira R. Hobbs, Ph.D

Assistant Professor

Civil Engineering

PLA does not degrade well and assist with zero waste goals

Conventional methods do not meet zero waste goals

Anaerobic digestion solves food waste and bioplastic challenges

alkaline pretreatment of bioplastic accelerates the hydrolysis process

<u>Hobbs, S. R.,</u> Parameswaran, P., Astmann, B., Devkota, J. P., & Landis, A. E. (2019). Anaerobic Codigestion of Food Waste and Polylactic Acid: Effect of Pretreatment on Methane Yield and Solid Reduction. *Advances in Materials Science and Engineering*, 2019.

treated PLA produced the most CH4 & achieved solubilization

Cumulativme Methane Production (mL)

life cycle assessment assist in quantifying environmental impacts

N=Nitrogen eq., SO_2 = Sulfur Dioxide eq., CTUe= Comparative Toxic Unit for Aquatic Ecotoxicity , CO_2 = Carbon Dioxide eq., CFC-11= Trichlorofluoromethane eq., O_3 =Ozone eq., CTUh =Comparative Toxic Unit health eq., CTUh =Comparative Toxic Unit Health eq., PM_{2.5} Particulate Matter 2.5 eq., MJ =Mega Joules).