

DOE Bioenergy Technologies Office (BETO) Workshop April 14-15, 2021 Advancing Synergistic Waste Utilization as Biofuels Feedstocks: Preprocessing, Co-products, and Sustainability

Maximizing the Value of Biofuel Feedstock through Diverse Applications

Soydan Ozcan, Thrust Lead Circular Economy for Polymer Composites Bio-based Materials and Manufacturing

Manufacturing Demonstration Facility Oak Ridge National Laboratory

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

Can polymer composite feedstock create value for the integrated MSW processing?

Prior research: Improving the economic viability of biomass supply chains by integrating composite applications through additive Manufacturing

Enabling the Circular Economy

"Develop Value Added Recycled Feedstocks for Additive and Composite Manufacturing"

 Recovery: Develop next generation polymer composites recovery technologies (e.g., gasification or pyrolysis reactors, recycled composites AM)

- Manufacturing Science:
 - Additive and composite process development for recycled feed-stream.
 - Streamline iteration of new technologies for circular economy: Unified, in-house composite recovery (e.g., gasification/pyrolysis), preforming (e.g., nonwovens/wetlay, compounding), and manufacturing (e.g., molding, AM) capabilities
- **Supply Chain Integration:** Network between industry partners to establish supply chain feasibility, technoeconomic analyses, and material lifecycle assessments

Recycling Provides Value, Supply, and Energy Savings

 CF production could amount to 4 trillion BTUs of energy

CAK RIDGE

 Recycling CF could save 3.8 trillion BTUs of energy

Others (0.03%)

Sources: EPA 2017, Bloomberg 2020, Grand View Research 2020

Class A Finish Automotive Part "Develop Value Added Product"

5 03.05.202/pnal Laboratory

Bioderived materials offer high-impact applications for feedstock and biorefinery coproducts

Why materials as a coproduct?

- Strong market demand from multiple industries
- High-volume and high-value markets
- Need for alternative to petroleum derived plastics
- Sequester carbon in long-term products

Research questions:

- 1. Is biomass a suitable replacement for carbon fiber in bioderived composites for large-scale 3D printing?
- 2. Can we design integrated biomass supply chains for fuels and materials to reduce biofuel feedstock costs?

biocomposite

Technical Approach Biomass Preprocessing

- Mechanical processing, size reduction and particle fractionation, to create feedstocks for fuels and materials
- What particle size fractions are best for materials? For biofuel conversion?

Technical Accomplishments/Progress/Results Composite strength

- Compared composites with 20% by weight fiber reinforcement (poplar/PLA vs carbon fiber/ABS)
- Strength target (FY19 Go/No Go) is 75% of CF/ABS

With particle size <180 μm , composite of 20% poplar and 80% PLA had tensile strength 89% of carbon fiber/ABS

CAK RIDGE

Technical Approach **Cost Analysis**

- Poplar for biomaterials price target
 - Current value of CF/ABS ~ \$6/lb
 - At 50% of CF/ABS, biocomposite price target = \$3/lb
 - At 20% fiber fill
 - Compounding process ~ \$0.65/lb
 - PLA ~ \$0.80/lb
 - Leaves \$1.55/lb (of composite) for fiber equivalent to \$3,410 /dry ton

Poplar delivered cost

Operation	\$/dry ton
Production & maintenance	100
Harvest	25
Skidding & chipping	25
Delimbing and debarking	10
Transportation	27
Hammermill	20
Particle size fractionation	10
TOTAL	217

Project Overview Large-scale polymer additive manufacturing

Bigger, faster, cheaper, smarter

<u>Rapid Progress in BAAM leads to</u>

Defining the Future of AM

long products

First building with precast façade made with 3D printed molds

Courtesy of Autodesk and Gate Precast

New Mold Manufacturing Process

14

ORNL/MDF - Gate Pre Cast - AES joint project

More Economical Printing Materials

ABS w/ 20% carbon fiber

PLA w/ wood flour ~\$3/lb

3D printed tool from Bio-based Materials

Hodgdon Boats 10.5m (35ft) Limo Roof Mold: Roof : 12.3 m² 6" Vacuum Flange : 2.3 m² Support Structure : 7.3 m³

16' x 8', approx. 1200lb material

3D Printing Offshore Wind Components

3D Printing Offshore Wind Components

Concrete base

Printing stay-in-place formwork presents a **26.7%** cost saving considering material, time, labor, etc.

CAK RIDGE MANUFACTURING DEMONSTRATION AND ALL OF MAINERSITY OF MAINERSITY OF ACILITY

Formwork and rebar in concrete base Final concrete "keystone"

This formwork eliminates a 1.75" deflection as compared to traditional formwork. This represents a **14.6%** saving in concrete Usage.

Indirect & Direct Applications Stay-in-place concrete formwork for offshore wind turbine keystone

3D Printing Sustainable Structures

Concluding Remarks

- There are opportunities to develop lowcost, sustainable diverse material selection for large-scale 3D printing for applications that do not require the full strength of carbon fiber/ABS
- a new, high-value feedstock coproduct stream that reduces biofuel costs by sharing feedstock supply chain resources and costs with biofuel feedstocks
- Biomass for bio-derived materials can complement biofuel feedstock supply chains

Acknowledgement

