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Project Overview

« History: DE-FOA-0001689; Topic Area 2: High value products from waste/or other
undervalued streams in an integrated biorefinery. The project has made S|gn|f|cant
progresses and is ready for BP2 verification.

* Project Goal
The project will leapfrog the technologies to enable multi- stream integrated biorefinery (MIBR) as

measured by a set of complex technical targets including:
« Carbon fiber: 100GPa elastic modulus and 2GPa tensile strength, ready for commercialization.

» Asphalt binder modifier: Increasing rutting temp by 10°C (about 1 PG).
 Bioconversion: 60% solubilized biorefinery waste, 25 g/L lipid titer, and 30% conversion rate
* Integrating 2 out of the 3 aforementioned products to achieve MESP reduction by $0.5.

« BETO Missions and Broader Energy/Environmental Challenges Addressed:

1
I 2.
3.
4
5
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25, ,iA.sphélt binder modifier to improve infrastructure resilience to global climate changes

Improve biorefinery economics and sustainability

Produce high value bioproducts and manage biorefinery waste

Reduce carbon emission by complete biomass usage

Light-weighted material to reduce fuel and energy consumption in transportation sector

: iorefinery. waste for lipid production will alleviate the feedstock limitations for biodiesel industry




Project Overview: Heilmeier Catechism Summary
* What we are trying to do?
Transform biorefinery economics and sustainability with the value-added products from waste stream.
Produce quality carbon fiber for broad applications.

Produce asphalt binder modifier to enhance high temperature performance and add value.
Produce lipid for biodiesel industry from biorefinery waste.

« \What is the state of the art? What is the limit?

« Part of the lignin waste are burned to power the operation, and the remaining were disposed as waste.

« Limited value recovery and low overall carbon efficiency — The success of modern biorefinery depends on
the value-added products such as DDGS.

» Lignin-based carbon fiber has low quality, and lignin to improve high temp PG was barely explored.
 Why is the project important?
« Bring down the biofuel price to competitive range to enable lignocellulosic biorefinery ($259 billion
I economic potential and 1.1 million jobs).

« Produce low cost carbon fiber ($4.7 billion market with 11% annual growth) and asphalt binder modifiers
with unique features (part of the $10.5 billion market).

* What are the risks?
K -i_l__éck'bFstructure-function relationship understanding makes it difficult to produce quality products
lorefinery=integration-and scale up. High cost for research on each stream.
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Management
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and commercialization.

Go/No-Go milestones were set at the end of each year and each of the three budget
periods. I

Monthly group teleconferences and teleconference with program management
were implemented to evaluate the progresses against milestones. Risk mitigation
strategies were designed and technoeconomic analysis guided the development.

Monthly teleconferences between the Pl and the program management are
Implemented to evaluate progresses, mitigate risks, and address challenges.

Engage industrial partners and advisors including ICM inc. and others for
I deliverables relevant to EERE MYPP.

» [ntegrate TEA throughout the project to ensure the relevance of the project
| outcome. TEA and LCA will guide the technology development and identify

Defined and measurable milestones were laid out for technology development:*:- |

\ «ecqQnomic drivers.
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Management Approach — Go/No-Go Milestones: =

Time Point Benchmark End of BP2 End of the Project ® g >
Product Metrics Milestones  Actual Milestones Actual BVIIES(e]al W o1 (8E]

Carbon MOE 20GPa 50GPa 100GPa Technical
Fiber Tensile 100MPa 1GPa 2GPa g‘;‘@gceme”tsl
Asphalt Rutting 7°C 10°C 10°C Economic
Binder Temp Incr. Outputand |
Modifier Lowtemp Same Same Same $§£‘] guide
Lipid for Titer 10g/L 15¢g/L 25¢g/L Development
Biodiesel  conhyersion 30% 30% 40%
Economic MESP! N.A. N.A. \WAY

| outcome _ggeez nA N.A. ~$3/GGE
1. g;Tliirr?slPEitch:nOI Defined S.M.A.R.T. Go/No-Go milestones were set and implemented to

_ ensure project progresses.
2. Gasoline Gallon

The technical milestones were designed in a way to ensure that the
economic targets can be achieved. Full ASPEN model was built.
Down-selection to two product streams based on TEA and performance.
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L at the end of BP2 to focus

funding and efforts.



Broad Scientific Impact and Transformative Industrié‘lﬁ]mﬁact

« Transformative Industrial Impact :
1. Develop two out of three product streams to bring down the MESP to below $3/GGE range
2. Constantly engage biorefinery companies like ICM, ADM, and POET.
3. Constantly engage carbon fiber industry, national biodiesel association, and investors.
4. TEA has shown significant potential of the platform to transform biorefinery economics.

* Broad Energy and Environmental Impacts— Well Addressing BETO Missions
1. Improve biorefinery sustainability and cost-effectiveness with value-added products from waste.

2. Provide low-cost carbon fiber to improve energy efficiency for US energy sector, with
applications on wind turbine, automobile and others.

3. Alleviate the feedstock shortage at biodiesel industry.
4. Enhance asphalt high temperature performance to improve infrastructure resilience to climate
I changes.
» Broad Scientific Impacts
1. 28 publications with total impact factors at 190.
y < 2.+ Two PCT patent applications.
umerous-scientific presentations and special events to engage companies.




Impact: Lignin Utilization to Enable Economic and. ..
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Sustainable Multi-stream Biorefinery T AR g

BETO Missions:

Improve biorefinery
economics and
sustainability

Produce high value
bioproducts and
manage biorefinery

waste

Reduce carbon
emission )Y
complete biomass
usage

Lignin Processing

Additional Bioproducts and

Biofuel Streams

Cellulosic Biomass Bae

Fuel finishing and blending

Xie, et al. Industrial Biotechnology 12 (3), 161-167
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Impact: Lignin as a Promising Substitute for Carb@n..q-

4

Fiber Precursor <

Lignin carbon fiber has broad impact on DOE missions:

1) Adding cost to biorefinery: Improve cost- effectiveness
2) Reducing MESP to enable biorefinery

3) Enabling broader carbon fiber usage with lower cost

4) Improving efficiency and sustainability of entire energy
sector

eééééééégf

Industry Volume Millions of Pounds/ Year

a 3 =%
4 .J_. i “" Dollars Per Pound Carbon Fiber Price




Impact: Asphalt Binder Modifier to Enhance ™. .

Infrastructure Resilence to Climate Change = % i

Asphalt pavement facts:
® 2.5 million miles of asphalt paved road in US.

m 3,500 asphalt mix plants in US, producing about 350 million tons of qsphal’r mixes per
year: $21 billion. g

w 17.5 million tons of asphalt binders
Binder: $600 /ton
Market: $10.5 billion

Asphalt binder functions as a glue in asphalt mixtures. Its quality have big
| influence on pavement perform.

-12 25 64 135

Pavement Temperature, °C
Values for PG 64-22




Impact: Multiple Value-adding Products 33
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Fundamental Challenges for Lignin Bioproducts:

-,Iu

Processing: Carbohydrate vs. Lignin

Lignin- collulose Biomass g

Carbohydrate Hemicellulose Recalcitrance
Complex (LCC) Lignin

Carbohyvydrates -

inapyl alcohol

U Uniform Enzymatic EI Heterogenelty

O Linear polymer hvdrolvsis ??? O 3D complexity

O Macromolecules y y O Macromolecules

|
E Fermentable sugar : Monomer | o
platform- | conversion? | Hydrophobicity

i i i | . .
Not All ngnln Are moGrEi?:ihlir;de. i P.<I).Iym.er? i Interunltery Ilnkages
Created Equal! arabinose, mannose  Utiization? ) :

- oS | otheroptions? | Functional groups

Molecular weight
Diverse Monomers

: Renders-set.al Energ. Environ. Sci. 2017;10(7):1551-7; Renders et Aromatic Compounds

"%l “ACS Sustain. Chem. Eng. 2016, 4(12):6894-904.




Structure-Function Relationship-guided ProcesS“Bkgs:ij:'érn
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Represented studies:
Q. Li et al. Green
Chem., 19, 1628—1634H
Z. Liu et al. Green
Chem., 21, 245-260

L. Lin et al. Green
Chem., 18, 5536-5547.
Q. Li et al., iScience,
23, 101405.

Q. Lietal., J. Mat.
Chem. A., 5, 12740-
12746.

S. Xie et al., Adv. Sci.,
6, 1801980.

1



Concept: Lignin with different chemistry
should be suitable for different material

productions

Strategy: Tuning polymer chemistry via I

lignin processing (fractionation)

A Concept of Multi-stream Integrated Biorefinery for Biomanufacturing
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Hypothesis: Fundamental Structure-Fum}‘,if'
Relationships in Lignin Carbon Fiber - #

{Cmmmmm)

Carbon fiber
mechanical property
 Elastic modulus
s Jensile strengt

Polymer chemist
* MW, uniformity

* Interunit linkage
unctional grou

rystallite structure
* Crystal content
* Crystal size

¢ Orientation

Processing/Feedstock—Polymer chemistry—
«#.*% Microstructures—CF properties relationship??




Processing Development Progresses: Fractionation:::
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Polymer Uniformity as a Key Factor for Carbon Fiber Quality: ==
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Linkage Profile Impacting Carbon Fiber Perform-éﬁfggﬂ-‘;‘-’?-
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The study finds that linear linkages will enhance

carbon fiber quality.

Q. Li et al. Green Chemstry, Accepted
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Develop a Solvent-free Fractionation ™% "
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Process Flow Diagram of Carbon fiber produdti:énr.:;z"
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T1003 — gases/fiber separator

T1004- carbonation furnace

T1005 — carbon/N2 separator

T1006 — surface treatment subprocess
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Fractionated Lignin Adds Significant Value to Bloreflnery o

Water Catalyst Impact of Lignin on High Temperature
Performance Grade
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A unique palletization technology was developed for R.
opacus fermentation of lignin. Such a technology has

B. Xu et al. Drafted increased lipid accumulation at the Ilow nitrogen
conditions and simplified the harvest.




Time Point Benchmark End of BP2
Product Metrics Milestones Actual Milestones Actual Milestones  Actual
Carbon Fiber MOE 20GPa 21 Gpa 50GPa 75GPa 100GPa I
Tensile 100MPa ~200MPa 1GPa 1.07GPa WieizE
Asphalt Rutting Temp 7°C 1PG 10°C 2PG 10°C ﬂ
Binder Incr. 7°C 15°C
Modifier
Low temp Same Same Same Same Same
Lipid for Titer 10g/L 10g/L 15g/L 12g/L 25¢g/L
E Biodiesel
Conversion 30% 30% 30% 30% 40%
I Economic MESP1 N.A. N.A. Depends RNFAY
Outcome
~$/GGE?2 N.A. N.A. ~$3/GGE pah¥jlele]=
o o MR R

%% Y7 We have met the milestones to down select carbon fiber and asphalt binder modifier for scale up.
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Summary

The project will leapfrog the technologies to enable multi-stream integrated biorefinery (MIBR).

1.  Overview — The develop and integrate multiple value-added bioproduct streams to enable multi-stream

integrated biorefinery (MIBR) to reduce MESP and improve sustainability and cost-effectiveness of
lignocellulosic biorefinery.

2. Management

 S.M.A.R.T Milestones, and Go/No-Go milestones at the end of each BP.
» Constant engagement with commercial partners.

« TEA and LCA guide the process advancement for commercial relevance.
« Two PCT patents filed.

3. Approach

» Rigorous management approach to enforce milestones.

* MIBR Development by Optimizing and Advancing Each Product Process
* MIBR Integration and Optimization

* MIBR Scale-up, TEA and LCA to guide the technology advancements and commercialization.
4. Impact
« The project is directly addressing MYPP goals.
« Aspen Plus model significant potential of carbon fiber to reduce MESP
» The low-cost carbon fiber could improve the efficiency of energy sector substantially.
« The asphalt binder modifier can enhance the infrastructure resilience to global climate changes.
5. Technical Accomplishments/Progress/Results

« The project has met all BP2 milestones.

» The project has delivered solutions to reduce MESP significantly

» The project has led to profound scientific discoveries, guiding future process development

» We will continue the scale up of two out of three streams according to the Go/No-Go milesones.



Quad Chart Overview SEey

Timeline

* Project start date: 09/01/2018
* Project end date: 06/31/2022

FY20
Costed Total Award
DOE $610,916 $2,236,211
Funding
Project $330,254 $559.056
Cost
Share

Project Partners™

* University of Tennessee, Knoxville/Oak
Ridge National Lab

« Washington State University
.« Texas Transportation Institute

“ « ICMinc. (as initial stage partner).

Project Goal

The project will leapfrog the technologies to
enable multi-stream integrated biorefinery
(MIBR), which will improve the economics
and sustainability of lignocellulosic
biorefinery and reduces MESP and $/GGE.

End of Project Milestone

At the end of the project, we will deliver
integrated biorefinery to produce carbon
fiber at MOE of 100GPa and tensile strength
of 2GPa, along with asphalt binder modifier
with 1PG increase of high temperature
performance without compromising low
temperature performance. We will select two
product streams out of three streams in BP2.
Currently, we set to select asphalt binder
modifier and carbon fiber as next step focus.

Funding Mechanism

DE-FOA-0001689; Topic Area 2: High value
products from waste/or other undervalued
streams in an integrated biorefinery.

2018.
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Responses to Reviewers’ Previous Comments =

 We appreciate the reviewers to acknowledge that the project ‘is scientifically sound and well
planned’, ‘highly relevant to the BETO MYP goals’, and has a ‘good team’ for execution. We also
appreciate the reviewers’ recognition of potential ‘serious commercial interest’ and being
‘supportive of BETO’s goals in a ‘unique way’. We agreed with the reviewer that value-added
products from waste is the near-term path for lignocellulosic biorefinery. The same principle
applies to corn ethanol, where DDGS enables the economics. We also agree with the reviewer
that the integration with current biorefinery processes should be explored. In fact, we are using
waste from AFEX, alkaline, and acid pretreated biomass. One of the advancement of our
technology is to develop a plug-in process to treat acid-pretreated biomass with alkaline to
dissolute lignin, and this dissolution fraction will be used to neutralize acid stream, forming a
lignin stream. The alkaline will have to be used to neutralize the acid stream, anyway. The plug-
in process can be readily integrated with current biorefinery design without significant
infrastructure changes. A full ASPEN model has been built for the process in the project DE EE
I 0007104 and proven that it did not add upstream cost significantly, yet resulting in various value-
added streams. The details has been submitted for publication. We agree with the reviewer and
will continue to integrate current pretreatment technologies, instead of creating new processes,
;‘t*cg qc_h_ievehimmediate, tangible and transformative impact on biorefinery industry.




Responses to Reviewers’ Previous Comments :=5

- The reviewers also highlighted ‘the specific target of reducing the cost of ethanol (by.: a
$0.50/GGE)’. In fact, we have built a complete ASPEN model for carbon fiber and is working on
one for asphalt binder modifier. The TEA models allow us to identify the economic drivers and
impact quantitatively.

« We appreciated that the reviewer’s recognition of ICM as a strong industrial partner. We actually
enjoyed working with ICM very much. Even though ICM are not working with experimentally due
to the re-structuring, they are still serving as an advisor for commercial development. We are
also engaging with other biorefinery companies like POET. The project actually attracts
significant interest from Venture Capitals and carbon fiber start-ups, too. We are engaging with
them, aiming to commercialize the technologies.

« We appreciate that the reviewer recognizes the ‘qualified and organized’ team. Regarding to the
process, we have explored the processing of AFEX, acid, and alkaline pretreatment-derived
lignin into carbon fiber, lipid conversion, and asphalt binder modifier. Moreover and as

I aforementioned, our optimized process is a slightly modified acid pretreatment, where the
alkaline to neutralize acid soluble stream were first used to treat solid fraction to dissolute more
lignin. This allows synergistic improvement of carbohydrate conversion and lignin utilization. Full
ASPEN_rT{odeI has been built to evaluate the process and identify the economic drivers.

Ty’ W T




Responses to Reviewers’ Previous Comments :=5

« We agree with the reviewer that the three different product paths makes this project more”
complicated than a traditional project. This is why we down-select to two different products at
the end of BP2. In fact, some of the most profitable corn ethanol wet-milling biorefineries also
produce multiple products, such as starch, corn oil, and syrup. The multiple-product approach is
critical to avoiding market saturation and maximizing the economic return. As aforementioned,
the pretreatment and fractionation technologies will be based on a modification of current
pretreatment without changes in infrastructure, which will allow us to quickly scale up the project
within three years. We agree with the limited budget and resources very much, but we are
leveraging the resources from existing EERE projects and institutional resources. During the
past two years, we have built two full ASPEN models for carbon fiber and our process. We are
working on the third one for asphalt binder modifier.
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The project has led to 28 publications with a total impact factor at 190.



Patent and Commercialization e

 The project has led to two patent applications.
1. J.S. Yuan, et al., “Conversion of lignin into bioplastics and lipid fuels”, PCT/US2016/024579, WO

2016154631 A1 — The PCT patent is at US and EU application stage.
2. J.S. Yuan et al., “Lignin fractionation and fabrication for quality carbon fiber”, PCT/US2019/019620

— This is a PCT application.

« Commercialization efforts -- We have actively engaged with two industries.
1. For lignocellulosic biorefineries, we have worked closely with ICM inc. We also had dialogue with

POET for lignin utilization.
2. For carbon fiber industry and pavement industry, we are engaging with Venture Capital and start

ups for commercialization.
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