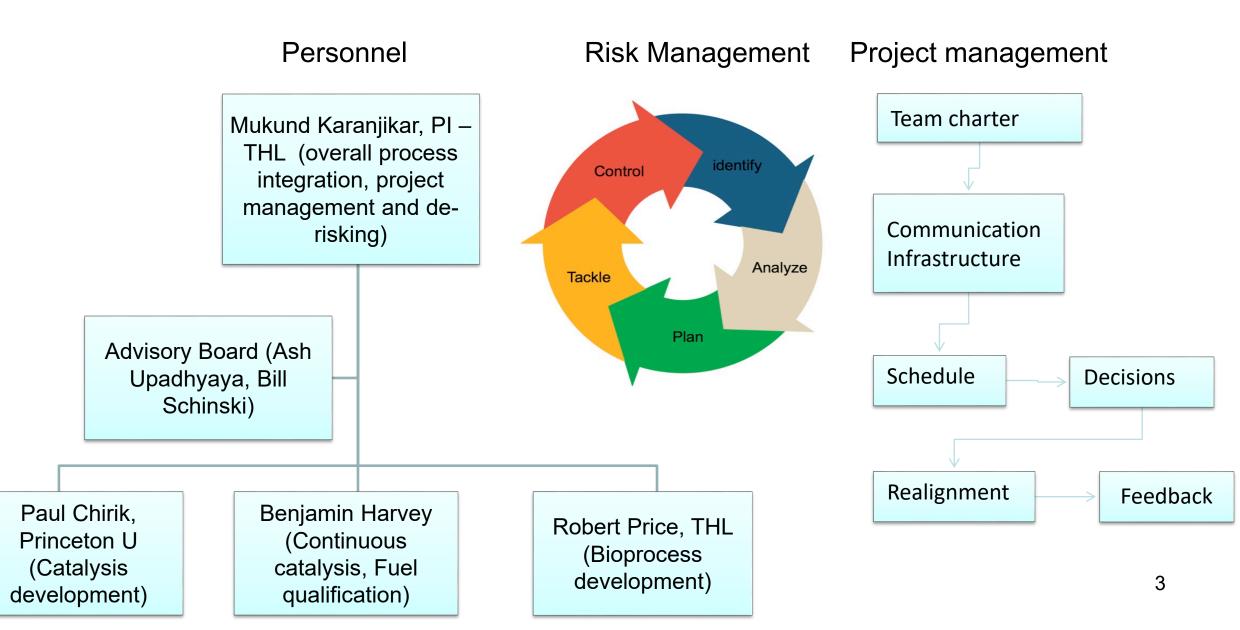
DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Novel Method for Biomass Conversion to Renewable Jet Fuel Blend

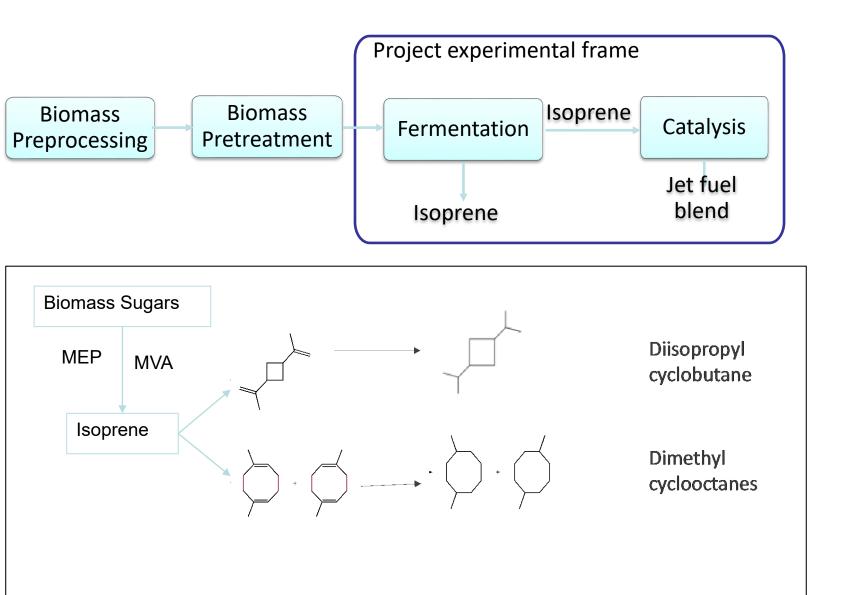
March 26 2021 System Development and Integration

> Mukund Karanjikar PhD Technology Holding

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Project Overview

- Higher Energy Density drop-in renewable jet fuel
 blendstock
- Project goal: Develop the process to produce renewable superior jet fuel blend


Project Description

- Commercialize renewable jet fuel
- Current Alternatives: Petroleum derived jet and Hydrotreated renewable (F-T fuels) or hydrotreated esters and fatty acids (HEFA)
- Important to demonstrate superior jet fuel from biomass
- Risks: First of a kind plant capital, competition with petroleum jet

1 – Management

2 – Approach

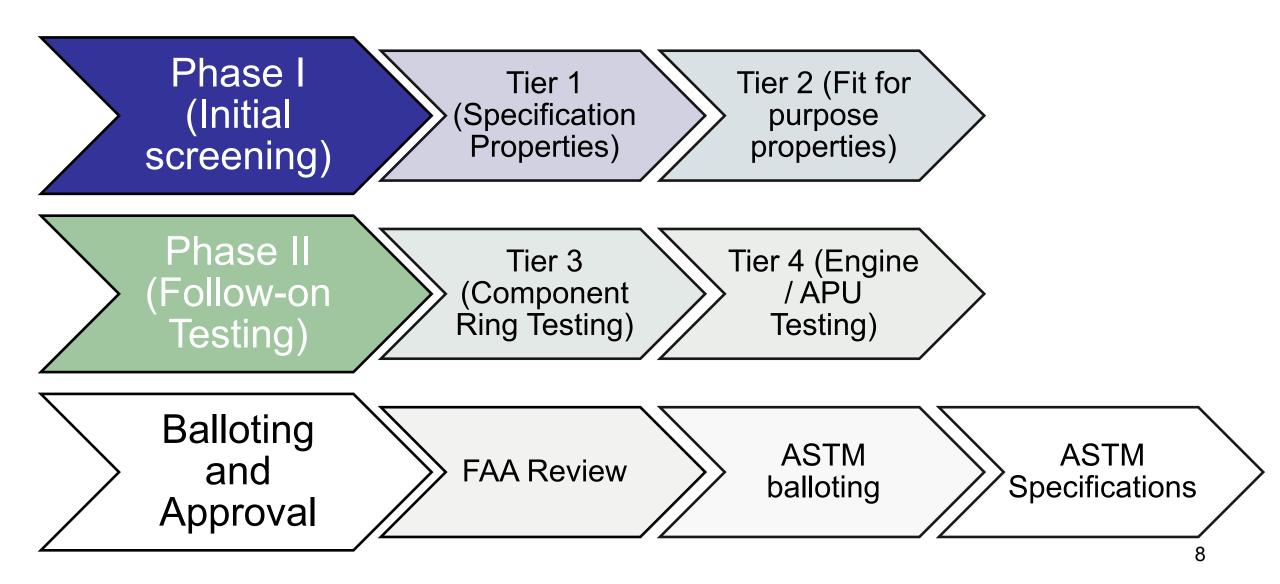
- Optimize and scale-up isoprene production using biomass hydrolysate
- Optimize the catalytic conversion of isoprene to drop-in jet fuel blend to produce higher specific energy jet fuel
- Process integration
- Deliver 100 gallons of fuel blend for characterization
- Develop overall process system, LCA and TEA models

3 – Impact

Attribute	DMCO	Jet A	Benefit
Gravimetric net heat of combustion (MJ/Kg)	43.822 §	42.8	2.4% higher
Volumetric net heat of combustion (MJ/L)	36.222	34.7	4.5% higher
Freezing point (°C)	-70 to -80	-40	30 C lower
Density (g/ml)	0.827	0.81	2% higher
Viscosity (cP)	4.17	8*	Exceeds
Flash point (°C)	50	38-66	Meets

4.5% higher energy density compared to Jet A

*limit, § - Measured using ASTM D4809


3 – Impact

- Feasible to replace aromatics (ring swelling issue addressed)
- In-service Engine maintenance addressed
- Co-product (intermediate) isoprene as a feedstock to chemical industry
- In discussions with one Aircraft manufacturer and two Oil and Gas Companies
- Interest from Air Force Research Laboratory for defense applications
- Interest from various segments of the US Navy

4 – Progress and Outcomes

- ✓ BP1 (verification) Go/No-Go (task 1)
- ✓ Successful chromosomal integration (2.1)
- ✓ Performed directed evolution using biomass hydrolysate (Milestone 2.2)
- ✓ Master cell banking (Milestone 2.3)
- Bioreactor parametric optimization (3.1) 2X improvement in titer of isoprene compared to verification period (in progress)
- ✓ Catalyst optimization for DIPCB (4.1)
- ✓ Catalyst/Activator Optimization for Hydrogenation Protocols (4.2)
- \checkmark Integrated cyclodimerization and hydrogenation (4.3)
- ✓ Produced 2 Liter DMCO for detailed characterization as a blend with HEFA (6.1)

Path to ASTM Certification

Summary

- Higher energy content (2.4% higher gravimetric and 4.5% volumetric)
- Promising renewable jet fuel blend
- Valuable intermediate / co-product
- High level of industrial and DOD interest
- Highly favorable full spectrum characterization for blending
- Potential to replace aromatics
- Potentially reduced engine maintenance

Quad Chart Overview

Timeline

- 10/01/2018
- 11/30/2021

	FY20 Costed	Total Award
DOE Funding	\$442,525.19	\$2,499,999
Project Cost Share	\$110,631.30	\$625,001

Project Goal

Demonstrate techno-economic feasibility of producing high energy density renewable jet fuel blend

End of Project Milestone

 Production of 100 gallon finished fuel blend
 complete a non-location specific basic engineering package (BEP) for the renewable jet fuel engineering scale (1 dry metric tonne per day biomass feedstock) process

3. Detailed fuel characterization profile

Project Partners

- Princeton University
- Naval Airfare Warfare Center, Weapons
 Division

Funding Mechanism FOA: DE-FOA-0001926 Topic Area 1: Drop-in renewable jet fuel blendstocks FOA year: 2018