

#### DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Drop-In Renewable Jet Fuel from Brown Grease via the Biofuels ISOCONVERSION<sup>™</sup> Process

#### 26 March, 2021 System Development and Integration

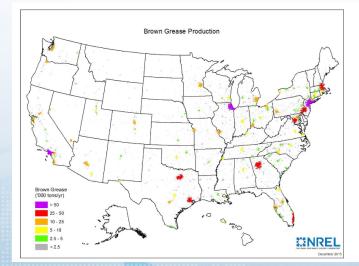
#### Edward Coppola, Principal Investigator Applied Research Associates, Inc.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

## **Project Overview**

- "Drop-In Renewable Jet Fuel from Brown Grease via the Biofuels ISOCONVERSION<sup>™</sup> (BIC) Process"
  - DE-EE0008506 was awarded 09/04/18
- Project goals
  - Clean up raw, low-cost, wet waste feed stocks (brown grease) from a variety of sources into an acceptable feedstock for the BIC process or other renewable fuel conversion technologies.
  - Demonstrate that Hydrothermal Cleanup (HCU) can economically clean wet waste (brown grease) and enable it to be converted into Jet and other renewable fuels at a mature price of < \$3 per GGE.</li>




## **Project Overview**

- Brown grease is a low-cost, wet waste feedstock that without significant pretreatment cannot be used in the production of renewable fuels due to high levels of contaminants
- The HCU process removes metals, phosphorus, and chlorine
- The clean brown grease is converted into jet fuel via Biofuels ISOCONVERSION (BIC)
- Catalytic Hydrothermolysis Jet (CHJ) produced by the BIC process was approved by ASTM as Annex 6 of D7566
  - Brown grease qualifies as a BIC feed stock in Annex 6

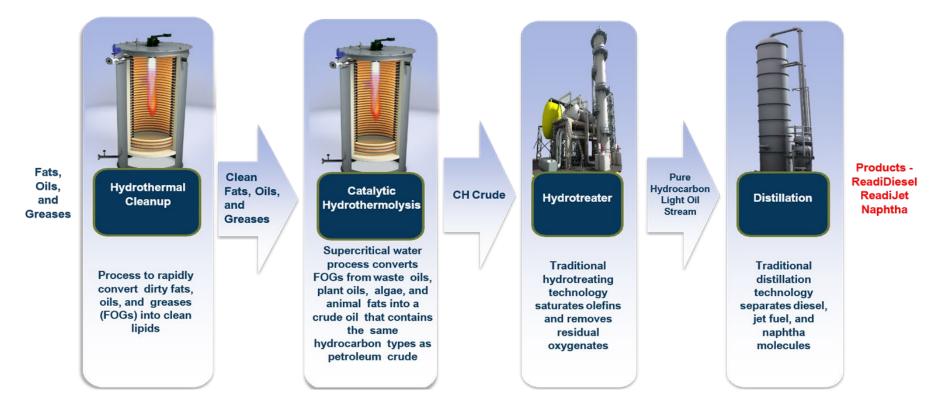


## **Project Overview**

- The majority of brown grease is disposed of in landfills and tipping fees must be paid
- If an economical cleanup technology for brown grease can be demonstrated, a large supply of brown grease could be aggregated in the U.S.
- Resource analysis performed by National Renewable Energy Lab (NREL) estimates 1.7 million tons of brown grease is produced each year in the United States, corresponding to 501 million GGE.



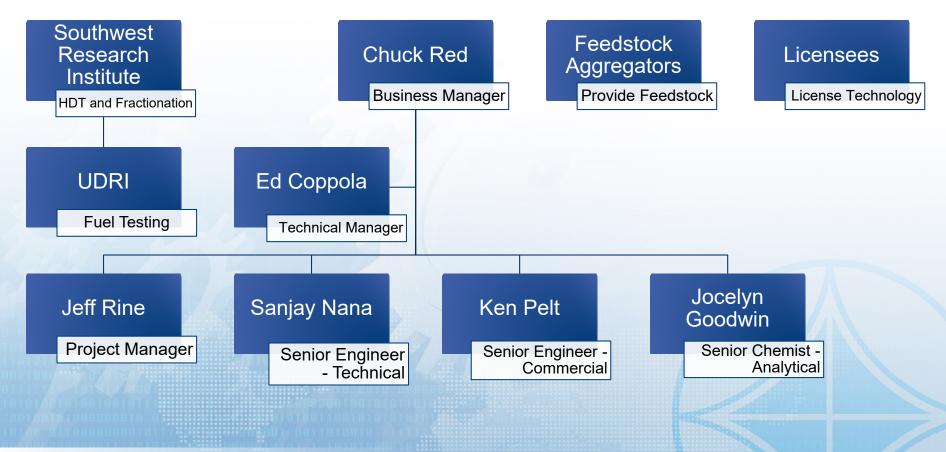





### **Project Overview – Technical Risks**

- Scaling in the HCU reactor metal, phosphorus, and nitrogen (protein) contaminants in the feed can deposit on the reactor walls
  - Mitigate very high (1000s of ppm) calcium content by establishing a feed stock specification and by collecting from aggregators that do not neutralize with lime
  - Establish a nitrogen specification and/or pretreat to reduce protein content
  - Acidulate soaps in the HCU reactor using a weak acid
  - Perform periodic descaling the reactor (clean in place) using proven chemical flush protocols




## **Biofuels ISOCONVERSION (BIC) Process**







## 1 – Management – Project Structure







### 1 – Management – Team Members

- Principal Investigator (PI) Ed Coppola
  - Also serves as Technical Manager (TM)
  - Leads technical efforts and provides technical guidance
  - Co-inventor of cleanup (HCU) and conversion technologies (CH)
- Project Manager (PM) Jeff Rine
  - Primary contact with DOE
  - Manages budget and schedule
  - Communicates with TM, CM, and project team
- Commercialization Manager (CM) Chuck Red
  Provides guidance on business and commercial aspects



# 1 – Management – Project Risk

- Feedstock acquisition
  - Suppliers were reluctant to supply drum quantities resulting delays and difficulty finding representative brown greases
  - Resolved by teaming commercial partners interested in commercializing brown grease as a renewable fuel feed stock
- Feedstock consistency
  - Contamination levels varied greatly between samples, caused in large part by neutralization of the brown greases with lime
  - Resolved by obtaining samples that were not neutralized
- Scheduling issues
  - Delays cause by feed stock acquisition, Hurricane Michael, and COVID-19 lockdown and quarantines





## 2 - Approach

- Verification (Budget Period 1) Go / No-Go Complete
- Analysis and Bench Scale Testing (Budget Period 2)
  - Survey of Brown Grease (BG) Feedstocks Complete
  - Screening tests to evaluate processing aids Complete
  - Optimization of HCU and CH conditions Complete
  - Production of bench scale quantity of jet fuel meeting D7566 Annex 6 specifications – In Progress – Go / No-Go Point



# 2 - Approach

- Pilot scale production, preliminary engineering of full-scale system (Budget Period 3)
  - Production of CH crude by ARA in existing pilot systems
  - Hydrotreating of CH crude and distillation by Southwest Research Institute into 100+ gallons of jet and other fuels
  - Preliminary engineering of commercial system



## 2 - Approach

- 1. Initial verification
- 2. Identify, procure, and evaluate brown grease feedstocks
- 3. Perform screening tests on processing aids
- 4. Perform HCU optimization tests
- 5. Perform bench-scale CH conversion tests
- 6. Intermediate verification
- 7. Validate HCU performance at pilot scale
- 8. Produce clean brown grease from HCU
- 9. Validate CH performance at pilot scale
- 10. Produce CH syncrude from clean brown grease
- 11. Hydrotreat CH syncrude
- 12. Distill whole hydrotreated syncrude to produce spec jet fuel
- 13. Preliminary engineering for commercial system
- 14. Final verification



# 2 – Approach – Challenges

- Procurement of representative brown grease samples
- Identifying hydrotreating and distillation vendors of the appropriate size to produce 100+ gallons of jet fuel
  - Most facilities are much larger scale or too small to economically process the quantities necessary
  - Southwest Research Institute recently added larger pilot systems that are appropriate scale for this project.
- HCU and CH Reactor fouling
  - It was recently determined that protein contamination is the likely cause because phosphorus and metals contents are reduced to very low levels, but nitrogen is only partially reduced
  - Testing is in progress to resolve this issue





# 3 - Impact

- The use of brown grease to produce renewable fuels will:
  - Reduce waste going to landfills
  - Provide a very low-cost, low-CI feedstock for renewable fuels
  - Reduce the cost of sustainable aviation fuel (SAF)
- Patent
  - The HCU process was previously patented (US Patent # 10,071,322)
  - Additional patents are pending





## 3 - Impact

- Commercialization
  - The BIC process has been licensed to multiple parties
    - 2 licensees have completed the third stage of front-end loading engineering (FEL-3)
    - 1 licensee is in FEL-3
  - Two commercial partners plan to use brown grease for a portion of their feed stock
  - Multiple licenses are pending for the HCU process as a pretreatment for other renewable fuel processes
  - At least one of these licensees plans to use brown grease as a portion of their feed stock



### 4 – Progress and Outcomes – Technical Accomplishments

- A survey of available brown grease feedstocks was conducted, and their properties were tabulated.
- Screening tests led to the selection of HCU aids and reaction conditions.
- Jet fuel meeting ASTM D7566 Annex 6 specifications has been produced from brown grease.



### 4 – Progress and Outcomes – Technical Accomplishments

| Analysis                     | Method                                                       | D7566 Annex 6 Jet A<br>Requirements | Jet Fuel from<br>BG 140-249°C | Units    |  |
|------------------------------|--------------------------------------------------------------|-------------------------------------|-------------------------------|----------|--|
| TAN                          | D3242                                                        | Max 0.015                           | 0.0102                        | mg KOH/g |  |
| SG (@60°F)                   | D4052                                                        | 0.775 – 0.840                       | 0.7795                        |          |  |
| Sulfur                       | D5453                                                        | Max 15                              | 1.16                          | ppm      |  |
| Flash Point                  | D56                                                          | Min 38                              | 40                            | °C       |  |
| Freeze Point                 | D2386                                                        | Max -40 Jet A<br>Max -47 Jet A-1    | -45.5                         |          |  |
| Total aromatics              | D6379                                                        | 8.0 - 20.0                          | 9.21                          | % m/m    |  |
| Distillation                 | D2887 converted to D86                                       |                                     |                               |          |  |
| 10%                          |                                                              | Max 205                             | 167                           | °C       |  |
| FBP                          |                                                              | Max 300                             | 240                           | °C       |  |
| Distillation Slope<br>T90-10 |                                                              | Min 40                              | 57                            | °C       |  |
| Distillation Slope<br>T50-10 | 3 <b>01000</b> 5100<br>3101001001001001<br>4701001-001001001 | Min 15                              | 29                            | °C       |  |



### 4 – Progress and Outcomes – Technical Accomplishments

• The contaminants in brown grease were significantly reduced by the HCU process.

| Sample ID   | Contaminants (mg/L) |       |     |      |     |       |       |
|-------------|---------------------|-------|-----|------|-----|-------|-------|
| Sample ID   | Р                   | Са    | Mg  | Na   | К   | Fe    | Ν     |
| Feed        | 23.5                | 148.5 | 1.8 | 34.6 | 9.9 | 174.3 | 1100  |
| HCU Product | 1.6                 | 3.1   | 0.3 | 7.8  | 0.8 | 0.5   | 956.8 |





# 4 – Progress and Outcomes – Milestones

**Milestone 2.4:** Brown Grease Characterized – Report to EERE detailing the characteristics of each brown grease procured.

**Milestone 3.3.3:** HCU Aids Evaluated Characterized – Report to EERE detailing the process impact of each aid evaluated

**Milestone 4.3:** Bench Scale HCU Testing Complete – Run report indicating product yields for each temperature and residence time tested.

**Milestone 5.4:** Bench Scale CH Testing Complete – Run report indicating product yields for each temperature and residence time tested. *In Progress* 

**Milestone 7.3:** Initial HCU Pilot Test Complete – Comparison table indicating yields and product quality of pilot and bench tests.

Milestone 8.6: HCU Production Complete – 400+ gallons of clean Brown Grease

Milestone 10.5: CH Production Complete – 400+ gallons of "syncrude"

Milestone 12.6: Hydrotreater Campaign Complete – 400+ gallons of WHLP

Milestone 13.6: Distillation Campaign Complete – 100+ gallons of jet fuel

**Milestone 14.4.5:** Capital Cost Estimate Complete – DSCE (+/- 30%) report from Chemex

**Milestone 14.5:** Operating and Manufacturing Unit Cost Complete – Report to EERE with bottom line manufacturing cost per gallon of jet fuel produced



# Summary

- Brown grease is an underutilized, low-cost wet waste feedstock for renewable fuel production
- HCU reduces the contaminant levels in brown grease to the point that it can be used in renewable fuels processes
- CH converts the cleaned up brown grease to syncrude that is hydrotreated and distilled into renewable fuels
- Jet fuel meeting ASTM D7566 Annex 6 specifications has been produced from 100% brown grease at pilot scale
- Work is underway to optimize conditions and produce 100+ gallons of jet fuel meeting ASTM D7566 Annex 6 specifications from brown grease



### **Quad Chart Overview**

#### Timeline

- Project start date: 01 October 2018
- Project end date: 29 July 2022

|                          | FY20<br>Costed | Total Award |
|--------------------------|----------------|-------------|
| DOE<br>Funding           | \$284,315      | \$2,360,000 |
| Project<br>Cost<br>Share | \$71,106       | \$591,431   |

#### **Project Partners**

• Multiple licensees considering use of brown grease as a renewable feed stock

#### **Project Goal**

- Enhance the HCU process to convert raw, low-cost, wet waste feed stocks (brown grease) from a variety of sources into an acceptable feedstock for the CH process or other renewable fuel conversion technology.
- Demonstrate that the HCU process can be performed cost effectively on wet waste (brown grease) such that the resulting product(s) can be converted to renewable fuel at a mature price of <u><</u> \$3 per GGE.

#### End of Project Milestone

- Produce 100+ gallons of jet fuel from brown grease.
- Complete preliminary engineering, including cost estimates on a commercial facility

#### **Funding Mechanism**

DE-FOA-0001926 2018

Topic Area 1: Drop-In Renewable Jet Fuel Blend stocks