DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

March 25, 2021 WBS: 3.5.1.101

Terry Marker Gas Technology Institute

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Project Overview

Project Overview Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

- Goal is to show IH² hydrogen self sufficiency and integrate IH² and Cool Reformer system to reduce IH² cost
 - GTI will demonstrate IH² hydrogen self sufficiency of the integrated IH² and Cool reformer system through pilot scale tests
 - Show integrated system is simple and low cost through testing and engineering work
 - Run the Integrated system for more than 500 hours and make more than 50 gallons of drop-in biofuel with <.4% oxygen
 - Reduce capital cost and operating cost by more than 25% with Cool Reformer and other improvements (Crumbles, Rapid Cycling Valves, RCPSA, Modular construction)

З

Cool Reforming Integrated with IH² (Integrated Hydropyrolysis and Hydroconversion)

- Directly make desired products
- Run all steps at moderate hydrogen pressure (100-500 psi)
- Utilize C₁-C₃ gas to make all hydrogen required
- Avoid making "bad stuff" made in pyrolysis PNA, free radicals

IH^{2®} 50 kg/d Continuous Pilot Plant

IH^{2®} Product Yields from Wood

Table: Typical IH 2 performance results for wood feedstock on a moisture and ash-free basis.

Output	Wood
C ₄₊ liquids, wt%	26
Oxygen in liquid, wt%	< 0.4
Gasoline, wt%	16
Diesel, wt%	10
Char, wt%	13
CO _x wt%	17
C ₁ -C ₃ , wt%	13
Water, wt%	36
H ₂ uptake, wt%	4.6
H ₂ make-up, wt%	0
Ammonia, wt%	0.18

- High liquid yields
- High process thermal efficiency
- A picture is worth...

Advantages of the Cool Reformer

- Can handle CO and CO2 in feed with no removal steps
- Improved extremely active catalyst very robust
- Simple low-cost design

Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Management

Project Management Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Additional Contractors

1 INL-Forest Concepts- IH2 Feed Preparation2

Project Management – Risk Mitigation Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

- Monthly Team Meetings
- 3 phase approach with important milestones and intermediate reports

Integration of IH2 with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Approach

Approach Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

We are currently in Budget Period 2

Second Budget Period Key Tasks/Milestones

In Progress

- Receive 3 tons of crumbles
- Shakedown Cool Reformer IH² integrated system
- Short term testing of integrated system and show H2 self sufficiency for > 50 hours and make 4 gallons of IH2 product <0.4% oxygens
- Intermediate Verification

Integrated Cool Reformer and IH² Pilot Plant

Key Technical Challenges Budget Period 2

- Integrated system working stably
- Showing Hydrogen self sufficiency over short period

Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels Impacts

- Speed Commercialization of IH²
- Make IH² lower cost and more commercially attractive

Process Steps Removed from Current Hydrogen Plant design by use of Cool Reformer System

Cool reformer system requires less equipment Simpler = better for small skid mounted designs

Other IH² Process Improvements to be Included In Engineering design

- Replacement of Hammermilled feeds with Crumbles feeds – More energy efficient and lower capital cost
- Use of Rapid Cycling Valves for Lockhoppers Reducing Lockhopper cycles from 15 minutes to 5 minutes resulting in 75% smaller lockhoppers
- Use of RCPSA for H2 purification instead of PSA
- Move to skid mounted modular design
- Overall Goal is to significantly reduce overall IH² cost

Integration of IH² with the Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Progress and Outcomes

Cool GTL Reformer– Connected to IH2

Cool Reformer Pilot Plant – Control Room

- Integration In Progress
- Shakedown and testing in Summer

Integration of IH² with Cool Reformer for the Conversion of Cellulosic Biomass to Drop In Fuels Summary

- Unique new Reformer
- Engineering evaluation of other IH² process improvements including Crumbles, Rapid cycling valves for smaller Lockhoppers, RCPSA, Modular construction
- Project in Budget Period 2
- Key Step in the Successful Commercialization of IH²

Quad Chart Overview - Integration of IH² with Cool Reformer for the Conversion of Cellulosic Biomass to Drop-In Fuels

Timeline

- Project start date Oct 2019
- Project end date Sept 2022

	FY20 Costed	Total Award
DOE Funding	\$149,111	\$1,320,000
Project Cost Share	\$28,000	\$341,000

Project Partners*

- KBR
- Shell, Synsel

Project Goal

Show Integrated Cool Reformer and IH², Hydrogen Self Sufficiency and reduce IH² capital and operating cost

End of Project Milestone

- Long term Integrated testing of Cool reformer and IH2 to show H2 self sufficiency over 300 hours. Operate integrated system for more than 500 hours and make 50+gallons of IH2 hydrocarbon liquid with<0.4% oxygen
- Engineering improvements show 25% reduction in capital and 25% reduction in operating costs for IH2 with all improvements.
- 3 Technoeconomics show IH2 drop in fuel for < \$2.5/GGE

Funding Mechanism

DOE DE-EE-0002029 - Topic area AOI-4,

FOA issued in 2019

Additional Slides

IH^{2®} Long-Term Operation

- Over 6000 hours of IH² pilot plant operation on various softwood and hardwood feedstocks, as well as corn stover and sugarcane bagasse
- Long-term tests validated catalyst life, provided process economic model inputs, and produced liquid product for fuel certification tests

Figure: Liquid yield versus time on stream from IH² pilot scale reactor during feedstock testing 2012-2016.

25

Initial verification – Passed – Nov 2020

_Cool Reformer in Small Pilot Plant in 554

Cool Reformer Process

Simplified Gas Feed and Post Treatment for Cool Reforming

- CO and CO₂ go to reformer
- No need for gas pretreatments
 - No gas hydrotreating to remove organic sulfur
 - No low-temperature shift (LTS)
 - No amine scrubbing to remove CO₂
- Simple reformer with new catalyst
 - No prereformer
 - Lower temperature operation
- Estimated cost* for 500t/d wood feed is <\$23 million
- •

* Estimated from component literature database

