



DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

# Bio-C2G Model for Rapid, Agile Assessment of Biofuel and Co-product Routes

March 23, 2021 System Development and Integration

PI: Corinne D. Scown Lawrence Berkeley National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

### **Project Overview**

**Challenge:** Feedstock availability, technoeconomic analysis, and life-cycle assessment are modeled on different platforms, difficult to integrate into a single model. Handoffs are clunky and involve proprietary, expensive, expert-only software

**Goal:** Develop a lightweight, flexible model capable of quantifying production costs, life-cycle emissions, water use, other relevant metrics for a hypothetical facility with identified organic/biomass feedstocks.





## 1 – Management





Corinne Scown (PI) TEA/LCA Expert

**Tyler Huntington** (Software Dev.) Tool Development

on Nawa Baral /.) (Proj Sci) ent TEA/LCA





Minliang Yang (Postdoc) TEA/LCA



Sarah Nordahl (PhD Student) LCA

All team members at Lawrence Berkeley National Lab Team located (in non-COVID times) at EmeryStation East, near Joint BioEnergy Institute & ABPDU





### 1 – Management



| Risk                            | Mitigation                                                                                                                                  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Limited adoption of tools       | Frequent feedback from JBEI users, input from ABPDU and clients, freedom to shift emphasis based on user needs                              |
| Model too complex or inaccurate | Staff project with software developer + TEA/LCA<br>experts to ensure robust code and accuracy, publish<br>results in peer-reviewed articles |



## 2 – Approach

- Get all biomass data in one place, including current USDA data
   and projected data from *Billion Ton report*
- Provide users ability to select biomass available around a site of interest, directly feed quantity and composition into a TEA/LCA

| e.                     | <b>Q</b> Search                                                       | Logand                                                                 |
|------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
| Q Search               |                                                                       | Material Recovery Facilities                                           |
| Biomass Data Source:   | Biomass Data Source:<br>DOE Billion-Ton Biomass Data ✓                | ✓ ● WWT Anaerobic Digestors                                            |
| USDA NASS Biomass Data |                                                                       | <ul> <li>W2E Anaerobic Digestors</li> <li>Combustion Plants</li> </ul> |
| Data Filters           |                                                                       | <ul> <li>District Energy Systems</li> </ul>                            |
| Year: 2017 ✔           | Year: 2020 ✔<br>Biomass Types:                                        | Biorefineries                                                          |
| Biomass Types:         | Agricultural Residues                                                 | County Biomass (BDT/Year)                                              |
|                        | <ul> <li>Forest Residues</li> <li>Food Waste</li> </ul>               | < 10 > 1,500,000                                                       |
|                        | <ul> <li>Energy Crops</li> <li>Municipal Solid Waste (MSW)</li> </ul> |                                                                        |
|                        | Manure<br>Scenario:                                                   |                                                                        |
|                        | 1% Yield Increase (Basecase) ✔                                        |                                                                        |

Provide point source locations that may supply feedstocks or compete for types of biomass







Surrogate ML modeling, simplified python-based process modeling, & physical units IO LCA modeling



Challenges:

- Accurate energy balance
- Maintaining stable tool
- Relevance for industry w/out much cellulosic biofuel activity

Metrics: # users, accuracy (R<sup>2</sup>), completeness, geographic coverage, # production routes built in



## 3 – Impact

- Puts TEA and LCA in the hands of non-experts (but with "guardrails")
- Provides insight into how varying different parts of the process impacts overall cost and environmental impact results – enables lab scientists to see what matters, what doesn't
- 4 publications published in ES&T (IF=7.9), Current Opinions in Biotechnology (IF=8.5), ACS Sustainable Chemistry & Engineering (IF=7.6)
- 6,825 visits
- 370 unique visitors
- ~10 min per visit



### **Tools & Resources**







| Milestone Name/Description                                          | Criteria                       | End Date   | Туре Р          | retreatment:                                   |
|---------------------------------------------------------------------|--------------------------------|------------|-----------------|------------------------------------------------|
| Finalize and demonstrate automated documentation                    | Live demonstration of          | 12/31/2020 | QPM Regular     | <ul> <li>Ionic Liquid ([Ch][Lys])</li> </ul>   |
| filtering) tool, TEA, and LCA                                       | auto-generate documentation    |            |                 | <ul> <li>Dilute Acid</li> </ul>                |
|                                                                     | file                           |            |                 | – AFEX                                         |
| Complete integration of separations tool and                        | Case study documentation       | 3/31/2021  | QPM Regular     | – DMR                                          |
| BioC2G tool                                                         | article                        |            | • P             | roducts:                                       |
| Build capability in Biositing tool to select at least 3             | Live demonstration             | 6/30/2021  | QPM Regular     | – Ethanol                                      |
| different types of plastics as a feedstock for conversion from MPEs |                                |            |                 | <ul> <li>Limonene + Limonane</li> </ul>        |
|                                                                     |                                |            |                 | <ul> <li>Bisabolene + Bisabolane</li> </ul>    |
| Complete demonstration case study (defined in Task 4)               | Preparation of journal article | 9/30/2021  | Annual Regular- | <ul> <li>Isopentenol (posted soon)</li> </ul>  |
| emissions, water consumption), and deliver completed                |                                |            | Project)        | <ul> <li>DMCO (posted soon)</li> </ul>         |
| harmonization with other BETO-sponsored                             |                                |            | • S             | cenarios:                                      |
| tools/models.                                                       |                                |            | -               | <ul> <li>State of Technology (today</li> </ul> |

- Baseline (50% theoretical yield)
- Optimal (90% theoretical yield)





- Tool allows users to define location, radius, and feedstock scenario
- Filter feedstock tyles of interest
- Carry over feedstock mix & quantity to TEA/LCA tool

| Fee        | idstock:<br>ixed V                                              |
|------------|-----------------------------------------------------------------|
| <b>Fee</b> | 28.190 (metric tons/day)<br>Reset To Default                    |
| Fee<br>114 | Adstock Cost:<br>10531 (\$/metric ton)                          |
| Fee        | edstock Moisture Content:                                       |
| <b>Fee</b> | edstock Cellulose Content:<br>24529 (%)<br>Reset To Default     |
| <b>Fee</b> | edstock Hemicellulose Content:<br>19949 (%)<br>Reset To Default |
| Fee<br>20. | 2dstock Lignin Content:<br>30784 (%)<br>Reset To Default        |
| Fee        | edstock Protein Content:                                        |

.....

**BERKELEY LAE** 





### Sample results





# Separation tool built to give more flexibility specifically for sugar-based routes

**Equipment Configuration & Costs** 



#### Product Specifications Microbe Properties **Boiling Point Specific Heat Capacity Microbial Host** Product Type/Application Fuel \$ 78.37 °C 2.46 J/g °C E. coli $\mathbf{v}$ Market Value Solubility in Water Cell Diameter Vapor Pressure kPa Moderate (\$10 - \$100/kg 🗢 5.95 Soluble Insoluble 1.69 microns State of Matter Solid Content Crystallizable % Liquid $\mathbf{v}$ 29.7 Yes Density **Required Purity** Product Accumulation % 789 g/mL 97 Extracellular Intracellular

**Product Specifications & Microbe Properties** 

| ↓<br>Decanter<br>Centrifuge | $\rightarrow$ $\downarrow$ $\rightarrow$<br>Pressure Filter | Diafilter       | → +<br>Distillation<br>Column | → → → → → → Molecular Sieve | →           | Ethanol<br>Total Product:<br>321,250,121 kg |
|-----------------------------|-------------------------------------------------------------|-----------------|-------------------------------|-----------------------------|-------------|---------------------------------------------|
|                             |                                                             |                 |                               | OPEX                        |             |                                             |
| Equipment                   | Installed Cost                                              | CAPEX           | Materials                     | Energy                      | Consumables | Total OPEX                                  |
| Decanter Centrifuge         | \$524,000.00                                                | \$2,576,993.00  | \$0.00                        | \$25,076.00                 | \$0.00      | \$25,076.00                                 |
| Pressure Filter             | \$6,502,170.00                                              | \$10,985,140.00 | \$0.00                        | \$0.00                      | \$0.00      | \$0.00                                      |
| Diafilter                   | \$56,000.00                                                 | \$1,918,763.00  | \$0.00                        | \$176.00                    | \$1,556.00  | \$1,732.00                                  |
| Distillation Column         | \$34,318.00                                                 | \$1,888,268.00  | \$0.00                        | \$3,905.00                  | \$0.00      | \$3,905.00                                  |
| Molecular Sieve             | \$9,013,122.00                                              | \$14,516,731.00 | \$0.00                        | \$94,392.00                 | \$0.00      | \$94,392.00                                 |
| Storage Tank                | \$4,099,966.00                                              | \$7,606,500.00  | \$0.00                        | \$0.00                      | \$0.00      | \$0.00                                      |
| Totals                      | \$20,229,577.00                                             | \$39,492,395.00 | \$0.00                        | \$123,549.00                | \$1,556.00  | \$125,104.00                                |

#### Minimum Selling Price Analysis



#### Process Parameters

| Upstream Pro        | cess Parameters  |                    | Recovery Pro  | ocess Parameters   |        |
|---------------------|------------------|--------------------|---------------|--------------------|--------|
| Facility Working Ti | me               | Solvent/Extractant | Price         | Electricity Price  |        |
| 7920                | hr/yr            | 0.4                | \$/kg         | 0.0572             | \$/kWh |
| Flow Rate from Fer  | rmentation Broth | Solvent/Extractant | Density       | Onsite Storage Tim | ne     |
| 380000              | kg/hr            | 655                | %             | 7 days             | \$     |
|                     |                  | Solvent/Extractant | Boiling Point |                    |        |
|                     |                  | 68.73              | °C            |                    |        |



## Summary

- **Goal:** Create an end-to-end feedstock assessment, TEA, & LCA tool usable by non-experts but still functional for experts.
- **Approach:** Combine fast, high-resolution feedstock mapping with lightweight process-based model and surrogate ML modeling, add physical units-based input-output life-cycle assessment model.
- Progress: Demonstrated for IL, DA, AFEX, DMR pretreatment methods, > 5 biofuels. Completed linked biositing tool, TEA, and LCA tool.
- **Potential Impact:** Early feedback for non-experts on key cost and environmental impact drivers, as well as screening of potential biorefinery sites.
- Future Work: Finish linking separations tool with conventional TEA/LCA and continue adding more routes and built-in products. Build user base and iterate on interface based on user feedback.



Source: Scown et al. 2021



### **Quad Chart Overview**

| Timeline <ul> <li>Start: 10/01/2018</li> <li>End: 09/30/2021</li> </ul> |                              |                | Project Goal<br>Develop a lightweight, flexible model capable of iterative<br>quantification of production costs, life-cycle emissions, and water<br>use: Bio-C2G                                                                                                                                                     |  |
|-------------------------------------------------------------------------|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                         | FY20                         | Active Project |                                                                                                                                                                                                                                                                                                                       |  |
| DOE<br>Funding                                                          | (10/01/2020 –<br>9/30/2021)  | \$325K         | End of Project Milestone<br>Complete demonstration case study (defined in Task 4) for cost and<br>at least 2 environmental metrics (e.g. GHG emissions, water<br>consumption), and deliver completed updating and maintenance<br>plan for Bio-C2G including harmonization with other BETO-<br>sponsored tools/models. |  |
| Barrier                                                                 | s addressed                  |                | Funding Mechanism                                                                                                                                                                                                                                                                                                     |  |
| Technolog                                                               | gy Uncertainty of Integratio | n and Scaling  | BETO Lab Call, FY19                                                                                                                                                                                                                                                                                                   |  |
| Process I                                                               | ntegration                   |                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                 |  |

\*Only fill out if applicable.



### **Additional Slides**



## Publications, Patents, Presentations, Awards, and Commercialization

- Yang, M., Baral, N. R., Anastasopoulou, A., Breunig, H. M., & Scown, C. D. (2020). Cost and Life-Cycle Greenhouse Gas Implications of Integrating Biogas Upgrading and Carbon Capture Technologies in Cellulosic Biorefineries. *Environmental Science & Technology*, 54(20), 12810-12819.
- Baral, N. R., Dahlberg, J., Putnam, D., Mortimer, J. C., & Scown, C. D. (2020). Supply Cost and Life-Cycle Greenhouse Gas Footprint of Dry and Ensiled Biomass Sorghum for Biofuel Production. *ACS Sustainable Chemistry & Engineering*, 8(42), 15855-15864.
- Nordahl, S. L., Devkota, J. P., Amirebrahimi, J., Smith, S. J., Breunig, H. M., Preble, C. V., ... & Scown, C. D. (2020). Life-Cycle Greenhouse Gas Emissions and Human Health Trade-Offs of Organic Waste Management Strategies. *Environmental science & technology*, 54(15), 9200-9209.
- Scown, C. D., Baral, N. R., Yang, M., Vora, N., & Huntington, T. (2021). Technoeconomic analysis for biofuels and bioproducts. *Current Opinion in Biotechnology*, 67, 58-64.

