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Project Overview

The objective of this project is to reduce the cost of producing biofuels
by designing a reliable, cost effective, sustainable, robust system for
feeding of biomass feedstocks to the reactor via developing analytical
models.

Motivations

Variations in particle size, high moisture and
ash contents lead to difficulties in handling and
feeding biomass to a reactor. POET-DSM paused ethanol production in 2019 [1]

“...bulk solids handling and material flows
through the system” has been identified as
a critical component to achieve the

design throughput of the conversion
processes [3].

Plugged screen in a grinder [2]
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Project Overview

. The DEM model will allow us to:

o Gain an understanding of how biomass properties impact its flowability
and size reduction.

o ldentify critical design parameters for equipment given biomass
properties and processing conditions.

ll. The Analytical Model will allow us to:

o Gain an understanding of how biomass properties impact system
performance.

o Gain an understanding of how biomass blending impacts system
performance.

lll. The validation effort at the INL PDU will allow us to:

Demonstrate that in the proposed system, the reactor’ s reliability is
nearly 90% for biomass with 10-30% moisture and 5-15% ash contents.
This testing will be conducted for 60-80 hours, at a rate of 1 dry
tons/hour.
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Quad Chart Overview

Timeline Project Goal
April 1, 2018 Design a system which guarantees process
March 30. 2022 reactor reliability of nearly 90% for infeed

’ biomass with 10-30% moisture and 5-15%

ash content.

FY 20 Costs Total Planned Funding . .
(FY 19-Project End End of Project Milestone

Date) The proposed process design (developed
using analytical models) is validated via
experiments at INL’s PDU.

The proposed process design identifies (i)
DOE Funded  $956,274 $1,799,998 process variables (i.e., system feed rate,

screen size); and (i) buffer location and

size, which allows the system to achieve

(o) 2 1
Project Cost $147.016 $200.000 90% of reactor’s design throughput.
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Clemson University, FOA Nr: DE-FOA-0001689
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University of Texas at San Antonio
Matera LLC
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1. Management

Organizational Chart
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Leader

Support
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Management Approach

Bi-monthly conference
calls/webinars of the team with
the Technical Manager, Project
Monitor and Advisory Board.
Bi-weekly conference
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Task-specific conference calls

and weekly internal meetings
with students and faculty.

Visits to INL by university Pls
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3 5 |Dr. Eksioglu Prepar_e q !y and anmual reports Mr. Richter Coordinate annual meetings.
Orpanize meetings.
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4 20 |Dr. Eksioglu mathematical models. Dr. Ront models.
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5 25 |Dr. Rom .
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an extended time)
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2. APPROACH: DEM

Bonded-sphere discrete element method (DEM)

« Particle mechanics-based numerical method

« Simultaneously capture complex particle shape, a wide range of
particle sizes, and particle deformability

« Effective and practical approach capable of simulating both biomass flow

and size reduction (lab and equipment scale)

DEM-based regression functions
» Optimization model uses regression functions to link biomass

characteristics to behavior
« DEM-based regression functions developed for predicting bulk densities (to
quantify flowability) and size reduction as a function of biomass

characteristics

wl intrapartcé foroesimoments § 8 e
( p = ) S m FEE
NITEL

10 mm

" =0.5R y
DEM switchgrass particles Switchgrass image analysis
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2. APPROACH: DEM

Top challenges faced

o Very limited physical and mechanical characterization data

o Complex material behavior (nonlinear, history-dependent,
heterogeneous...) & inherent large variations

o DEM is computationally expensive

BP-1 Go/No-Go decision points and metrics
1) Performance of the DEM models to accurately predict biomass material
behavior in the proposed process.
« A systematic and quantitative evaluation of DEM performance against
analytical, empirical, and experimental results/data at the particle, lab,

and PDU scales. (this addresses some key 2019 Peer review
comments on DEM)

2) Usefulness and quality of data at INL
» Historical data (published and unpublished)
 New PDU test data (conducted at INL in 2019 and 2020)

We met both criteria and received the “Go” decision after BP-1.
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2. APPROACH: Mathematical Models

Process Optimization Model

o A deterministic mixed-integer programming model

o A dynamic model of biomass properties, process variables, and buffer
location/size

o Minimizes processing time and maintains reactor utilization withing 90% of its
capacity.

o Evaluates sequencing of bales based on moisture level.

Biomass Blending Models

o An extension of the Process Optimization model.
o lIdentifies blends of stover, miscanthus and switchgrass to achieve targeted ash
and carbohydrate contents for biochemical conversion.

Stochastic Optimization Models

o An extension of the Process
Optimization model

O L FO-OL O

O Evaluate Stochastic variations of QCorn stover (3-P) <:> Corn stover (2-P) O Switchgrass I:l Miscanthus
biomaSS denSity, moisture Content Orange: Low Moisture Green: Medium Moisture Blue: High Moisture
and particle size on processing time Bale Sequencing

and reactor utilization.



2. APPROACH: Process Optimization

- jron Som Lnom fanom Jewon Laie ' 3'5.5 40H,60L,100M 40H,100M,60L 60L,100M,40H  6L,10M,4H 100M,60L,40H 0. : J -— ‘ - ‘ : J - ‘ - ‘
Baseline Control Proposed Control No Buffer Capacity Expansions With Buffer Capacity Expansions
Reactor Feeding and Coefficient of Reactor Target Rate of Proposed
Variation Control
OS E RVATI O N S Attribute Baseline Control Proposed Control
Buffer
Bale infeed rate, size/location, bale
o The proposed control leads up to 7.5% reduction , discharge rates from  infeed rate,
. . . . Control variables  storage units, discharge rates
in the unit cost of processing biomass. discharge rate from  from storage units,
pelleting discharge rate from
. lleti
o The proposed control leads to approximately pee
o . . . State variables Amount of processed material in each
7.5% reduction of processing time. State variables ycation during each time step
. . . Bale sequencing
o Short feeding patterns Low — Medium — High ol s ST
. ale sequence anaom moisture level an
bales perform the best in terms of costs and target feed rate to

the reactor

processing time. _
Feeding of the

Feeding of the system 4 e ads to

iati I I I is controlled by ISP
0 ;I;]here are Iegs variations in feeding of the reactor in Tastfeed rate B0 Nt Ef;‘:;f:ﬁ'f&ﬁ:
e proposed process. e

and target rate of the .
the planning
reactor. .
horizon.
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2. APPROACH: Biomass Blending

I toryL | Reactor Feed Rate and Input Rate 5 Reactor Feed Rate and mput:%?;;:;semata
a AT LLLLLLED
E A s Wit T W """""
/“.M‘;L:/ TN .'la'u :r‘%.w.m”.f.fx ‘‘‘‘‘ R I S A R S S T R R : ----- o I I
Long Feeding Patterns Short Feeding Patterns Long Feeding Patterns Short Feeding Patterns
Inventory Level Reactor Feeding Rate
OSERVATIONS e
g swcngress —
o Processing time of short sequences is 17- 46% =
shorter than that of long sequences. =
o Processing rate of short sequences is 12- 46% Long Feeding Pattorns
higher than that of long sequences.
o The maximum inventory level of short sequences is e
. 5 swchgrass =
4 times lower than that of long sequences. | N I
. . . . comswovera® {1111 T ER
o Creating a short sequence is labor intensive. NENENNEEENEE

Short Feeding Patterns
Bale Dispatch
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2. APPROACH: Challenges Faced

o Modeling of equipment clogging is challenging because of lack of data.

o PDU operator adjusts processing speed of equipment to reduce clogging.

o No external sources of data are identified. T ToS———

o Modeling of the relationship among equipment setting,
infeed rate, and particle size distribution is challenging
because of lack of data.

o Extensive experimental data is needed to develop models Power Logger Data

which describe these relationships.

o Modeling of the system for miscanthus is challenging because of lack of
data.

o We do not have historical data from the PDU.

o Miscanthus is an expensive product, thus, conducting experiments to collect the
necessary data is not feasible.

o The development of the stochastic optimization models is impacted by lack of
data necessary to develop distributions of problem parameters.
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3. IMPACT

o Utilizing the results of the analytical models to guide
planning of proposed process control can lead to:
o Reduced process time and costs
o Reduced impact of feedstock variations on reactor’s uptime
o Prevent equipment clogging

o The results of this research are disseminated via:
o 2 refereed journal publications
o 4 manuscripts submitted for publication
o 2 conference proceedings
o 8 presentation in professional conferences
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3. IMPACT

(@)

Publications

Guo, Y., Chen, Q., Xia, Y., Westover, T., Eksioglu, S., & Roni, M. “Discrete element modeling
of switchgrass particles under compression and rotational shear”. Biomass and Bioenergy,
141, 105649, 2020. https://doi.org/10.1016/j.biombioce.2020.105649 (Tasks 2.2 & 2.3).

Liu, D., S.D. Eksioglu, M. Roni, F. Kucuksayacigil “Optimization Models for Streamlining of
Biomass Processing Systems,” Submitted to Proceedings of the Institute of Industrial and
Systems Engineers Annual Conference (May 2021) (Tasks 4.3 & 4.4).

Kucuksayacigil, F., S.D. Eksioglu, M. Roni, Q. Chen, K. Castillo “A reliable biomass process
design in an integrated biorefinery,” Proceedings of the Institute of Industrial and Systems
Engineers Annual Conference (Nov. 2020) (Tasks 4.2 & 4.4).

Kucuksayacigil, F., M. Roni, S.D. Eksioglu, “Optimal Control of Feedstock Preprocessing to
Handle Variations in Feedstock Characteristics and Reactor In-Feed Rate,” Submitted to
International Journal of Energy, 2020 (Task 4.2 & 4.4).

Gulcan, B., S.D. Eksioglu, Y. Song, M.D. Roni “Optimization Model for Integrated Biorefinery
Operations,” Submitted to Optimization Letters, 2021 (Tasks 4.2 & 4.4).

Xia, Y., Z. Lai, T. Westover, J. Klinger, H. Huang and Q. Chen, “Discrete element modeling of
deformable pinewood chips in cyclic loading test”, Powder Technology, 345: 1-
14, https://doi.org/10.1016/j.powtec.2018.12.072, 2019. (Task 2.2)

Guo, Y., Chen, Q., Xia, Y., Klinger, J., & Thompson, V. “A nonlinear elasto-plastic bond model
for the discrete element modeling of woody biomass particles”, Powder Technology, in revision,
2021. (Task 2.2)

Lai, Z., Y. Xia, H. Huang, T. Westover and Q. Chen, “Discrete element modeling of granular
hopper flow of irregular-shaped deformable particles”, in review, 2019. (Tasks 2.2 & 2.3
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3. IMPACT

Il. Presentations

O

Gulcan, B., S.D. Eksioglu, Y. Song, M. Roni, Q. Chen “Optimization models for integrated biorefinery
operations,” Virtual Annual Meeting of INFORMS, November 2020 (Tasks 4.2 & 4.4).

Kucuksayacigil, F., M. Roni, S.D. Eksioglu, Q. Chen, K. Castillo “Optimization of biomass process
design in an integrated biorefinery,” Virtual Annual Meeting of INFORMS, November 2020 (Tasks 4.2
& 4.4).

Kucuksayacigil, F., S.D. Eksioglu, M. Roni, Q. Chen, K. Castillo “A reliable biomass process design in
an integrated biorefinery,” Virtual IISE Annual Conference, November 2020 (Tasks 4.2 & 4.4).

Chen, Q., Guo, Y., Tasnim, Z., Xia, Y., Roni, M., & Eksioglu, S. “Discrete element modeling of
switchgrass particles for integrated process optimization”. Virtual AIChE 2020 Annual Meeting,
November 2020 (Tasks 2.2 & 2.3).

B. Gulcan, S.D. Eksioglu, M. Roni, K. Castillo, “Integrated Process Optimization for Biochemical
Conversion,” IISE Annual Meeting, Orlando, FL (2019). (Task 4.1)

Y. Guo, Q. Chen, Y. Xia, M. Roni and S. Eksioglu, “Discrete element modeling of chopped
switchgrass: particle size and shape effects on bulk mechanical properties”, Engineering Mechanics
Institute and Geo-Institute Specialty Conference, Pasadena, CA, (2019). (Tasks 2.2 & 2.3)

Y. Xia, Z. Lai, Q. Chen, T. Westover, J. Klinger and H. Huang, “Discrete element modeling of granular
flow of flexible woody biomass particles”, Engineering Mechanics Institute and Geo-Institute Specialty
Conference, Pasadena, CA, (2019). (Tasks 2.2 & 2.3)

Z. Lai, Y. Xia, H. Huang, T. Westover and Q. Chen, “Numerical characterization of biomass flowability
in biorefinery”, Idaho National Laboratory Annual Intern Expo, Idaho Falls, ID, (2018). (Task 2.2)
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4. PROJECT OUTCOMES

o BP 1 tasks are completed.

o BP 1 Go-No-Go is completed.

o BP 2 work will be completed by May 15t.

o We are in the process of scheduling our BP 2 Go-No-Go.

University of Arkansas/Idaho National Lab
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4. PROJECT OUTCOMES: DEM

Technical accomplishments (DEM)

o Abonded-sphere DEM model developed and validated specifically for
switchgrass (published in Biomass & Bioenergy: Guo et al. 2019)

o DEM-based regression functions for predicting bulk densities (used to

quantify flowability) as a function of biomass particle sizes and moisture
contents, and functions validated with PDU data.

Functions for predicting loose and tapped bulk densities

D _ _ Doo
Ploose = 186348 + 206.1697w — 110.302 D5, + 0.709 22 Ptapped = 224.755 + 248.661 w — 133.036 D50 + 0.856 -
200 || M Regression model 20 I'm Regression model
ME W PDU test " W PDU test
= g 200
~ 150 &
2 =
& 2 150
; 100 §
2 = 100
E
=] 50 =
= é 50
=
0 0
& o o o Q) % o S o o = ) o ~
¥y § 0§ 0§ 0§ I I ¥ ‘25“\ v ¥ 9 94 N
Prediction sets Prediction sets
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4. PROJECT OUTCOMES: Math Model

Technical accomplishments (Math Model)

o A deterministic model is developed to evaluate the impact of buffer size
and location, and moisture level on processing time and reactor’s utilization
of switchgrass (submitted to International Journal of Energy:
Kucuksayacigil et al. 2020).

o A biomass blending model is developed to evaluate the impact of biomass
characteristics (ash and carbohydrate contents) on processing time and
reactor’s utilization of switchgrass (submitted to Proceedings of IISE
Annual Conference: Liu et al. 2021).

o A stochastic model to evaluate the impact of biomass moisture level and
particle size distribution on processing time and reactor utilization using
data about switchgrass (submitted to Optimization Letters: Gulcan et al.
2021.)
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5. PROJECT SUMMARY

. The DEM models show:

o Bonded-sphere DEM developed and validated that capture key biomass
particle characteristics

o DEM-based functional relationships capable of predicting biomass
flowability (quantified using bulk density) as a function of biomass
characteristics; validation using PDU data showed the accuracy met the
criteria set in Go/No-Go.

o DEM grinding models account for physics of particle breakage and could
predict the entire output particle size distribution.

ll. The analytical models show:

o The proposed system control leads up to 7.5% reduction in the unit cost
and processing time of biomass as compared to basic control.

o Using short sequences of bales, created based on moisture level, leads to
reductions of processing time and cost while maintaining a continuous flow
of biomass to the reactor.

o Blending of biomass allows the system to meet process requirements at all
time.
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APPROACH: DEM

 DEM calibration using INL mechanical test

data of switchgrass

Shearing Model Generation Uniaxial Loading .
Compression test Bulk density test
600 B T pimen "
a oo T T T T T | -- - Experiment «_ 80 F—8—DEM
" 1£| TJS et .- 'ri 12 1 o E’r‘ 5 hehPa | é’m | — — — PDU data (2019)
z a £=0.11 - I s 260 r
;. 400 - ! 1;“0.25 '.T___.-' R :-‘_— E g _—_—]-'EP_E,ZI,:TPH. u % 50 |
g ’ 7 2 o E L0eRPa o T T
g e mT i 6 . Eso0 t
2 200 | 132 e g %20 L
. Pt o 3r . 210+
. et [ 0 ' ' ' :
i) L . ! s ! s 0;—-—'—“’5}-":'“ —L - —— 0 50 100 150 200 250 300
Particle friction calibration Young’s modulus calibration Particle density calibration
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DEM-based regression

« Bulk Density prediction (after Grinder -1):

Generating
particle size
distribution for
DEM

DEM simulation
(30 cases) and
regression of

ploose & ptapped

Obtaining wet

Ploose & ptapped

_ pdry
using™ ~1- o

i) Ploose = 56.183 + 65.312w — 8.473Ds +0.015$—j‘;
C 80
o -
100 Q % £7° P
) '5-DEM © 2260 a5
g - 80 — Target PS E % _g _5,;'?
Param D5,  Dgyf 85 60t ke 58 o
o .8 Q . e
eter mm Dy 27 w0 o S a0 a
L . N
20 ks AN 30 ; : : :
Ranges 1.77 1.6 v § . . . . . v v 30 40 50 60 70 30
fl"0m - - I:> 5‘ US 10 15 20 |:> :> Loose bulk density(DEM), kg/m?
PDU 231 26 . Particle length, mm Prapped = 86.334 + 89.4410 — 16.087Dsq +0.022 72
10
(201 9) E:)” 80 | i]T)frI;tPSD ) %1;2 I ptapped=UA0127pf°DSE+0.8512,/3]0,35% 110
S = o .. 100
Values 10.23 8- 2500 £ .
: 28 1 Z r 52 el
used in — 16 g 440 g @ . RN Lo
DEM  14.85 E 2o | B L I
. S . L . . '?é 20 L é% 0 :’.:h-.
1 2 3 g o s - w e8| o
Particle width, mm 0 20 40 60 80 10

Loose Bulk Density , kg/m3 ! * ' ! ! !
40 50 60 70 80 90 100 110
Tapped bulk density(DEM), kg/m?

Infer ranges from Fitting particle Obtaining dry Regression
PDU test data length and width Pioose & Ptapped mo%els
(2019) values

*Regression model predicts wet piyose & Piapped Values.
*Same methodology is followed for prediction of e & Prappeq after Grinder -2
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Validation of DEM mdoel with PDU test

« Validation of DEM regression model :
After Grinder -1 :

. Dgg _ Dgg
Ploose = 56:183 + 65.312w — 8.473D5, +0.015~ Ptapped = 86:334 + 89.441w — 16.087D5q +0.022
80 160
20 M Regression model 140 M Regression model
m PDU test W PDU test
E 60 T 120
25 e
B <100
é 40 % 80
24 30 <
% % 60
2 20 = 40
3 L
= 10 2 20
&
0 0 ~
> ~ o~ o ) o o 9 & o S 9 & I
g & & & &§ & & 2 % < Q 8 i X
D
D Ptapped = 224.755 + 248.661 w — 133.036 Dy, + 0.856D—90
Ploose = 186.348 + 206.1697w — 110.302 D5, + 0.709 0 w0
D1o
20 Mm Regression model
200 || M Regression model - W PDU test
B M PDU test g 200
g e
=150 -
z Z 150
= 100 2 100
= e
f=} =]
g =
g 50 2 50
S &
0 N N
S
‘bé) Q$ Qlé? ‘fr?b @a@ Q";? ‘ﬁ?o N ® N ® N N ®
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DEM grinding model

e Grinder -2 model

CAD drawings

|

Meshing

N

304.8 mm (127)
—

iy
4
- | /
- /r
- frr
o 1,371.6 mm (54™) i
\ \
L\
el \\
; N
;

—
914.4 mm (36”)

1,371.6 mm (54”)

G-2 PDU equipment G-2 PDU measurements STL files G-2 model
) 100 0.08
. . . chﬁ 90 007 F
Scaling law applied 2 50 | 20
« Same particle rate s ol E|
» Same screen opening to particle § S0t 2 004 |
size ratio % :8 —Output | F 003t
« Particle templates: 4 ,7,10 mm £ 2 | — Input kS gg? [
. . = 10 - i
«  Without pan and increased g . . . . o . . . .
Particle size/SF , mm Time, s

Particle size distribution and size parameters match quite well with SF = 4
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2. APPROACH: Mathematical Model

Control Variables:

Z;: Infeed rate of the system at period t (dry tons)
X;i¢: Outflow from equipment i at period t (dry tons)
M;;: Inventory level in equipment i at period t (dry tons)
Vi¢: Speed of the conveyor belt at period t (m)

Problem Parameters:

w, h : height (m) and width (m) of a bale

d :density of a bale (dry tons/m?3)

Yit - amount of biomass per m of conveyor belt
e.g., yi: =w X h x d (tons/m)

U;: Processing capacity of equipment i (dry tons)
I: Set of equipment in the facility

Model Constraints:

A. Operational constraints (Vt € T):
Zy < V1eVie

The amount of biomass fed to the system depends on the
speed of conveyor belt (V;;) and biomass characteristics (d).

Bale density (d) = 0.209 tons/m?

RESUEN @
@®>
—

Y =w=*h +xd=1219 %0914 0.209
= 0.233 tons/m
1.2m P

0.9 my,,

B. Capacity constraints (Vi eI, t €T):
Xie < Uj,
M < U,.

The amount of biomass processed and inventoried is limited by
processing/storage capacity of equipment.
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2. APPROACH: Mathematical Model

Model Constraints:

C. Inventory balance constraints (Vi € I,t € T):
My = M1 + Xij—1¢ — Xyt

Storage: The amount of inventory in the current period
depends on the inventory from the previous period, the flow
in, and the flow from the equipment in the current period.

D. Flow balance constraints (Vi € I,t € T):
Xit = Xi—1,e.

Conveyors: The amount of flow from a conveyor equal the
amount to this conveyor.

E. Reliability constraints (vt € T):

Xrt S U-r;
XTtZ LTJ
Reactor:

T
1/TZ Xyt =R, - index representing the reactor
t=1 Ur — processing capacity
Lr— lower bound
R - targeted processing rate

F. Non-negativity and integer constraints.

Objective:

Minimize system wide costs

Notice:

o Energy costs are in $/hour:
By minimizing energy costs, we are also minimizing
processing time

o Storage costs:

Inventory holding costs and amortization cost of new
storage equipment
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2. APPROACH: Experimental Setup

Baseline Control Proposed Control

Bale Input e | o
DC1 {  Separate ,ﬁ# DC2 H DC3 |
sC3 H H G2 J 4
|

[ o

:  Drag Chain Conveyor

:  Screw Conveyor DC: Drag Chain Conveyor

Grinder SC:  Screw Conveyor

Hopper Grinder

Pelleting Equipment Hopper

Metering Bin Pelleting Equipment

Storage Bin

— Current Process Reactor

Storage Bin

G:
H
P
M:  Metering Bin
5 S
— Current Process
R

- — Separation Process
- Reactor
- = Separation Process

Capacities of storage units
are not expanded

— Inventory can Expand

Capacities of storage units
can be expanded

Attribute Baseline Control Proposed Control

Buffer size/location,

Control variables

Bale infeed rate,
discharge rates from
storage units, discharge
rate from pelleting

bale infeed rate,
discharge rates from
storage units,
discharge rate from
pelleting

State variables

Amount of processed material in each location

during each time step

Bale sequence

Random

Bale sequencing is
guided by moisture
level and target feed
rate to the reactor

Baseline Control

Feed forward control:
Reactor
Input (Infeed rate) Grinder 1.
- - oupt
(Ta 5“3!'

Target feed rate to
the reactor

Feeding of the system is
controlled by product
characteristic and target
rate of the reactor.

Feeding of the system
leads to
maximization of
throughput over the
planning horizon.

Infeed of system is not
driven by the feeding of
reactor.

Proposed Control

Input (Infeed rate)

Feedback loop control
Reactor
Grinder 1
. - Quiput
(Target rate)
_—

|

Infeed of system is driven by
the feeding of the reactor.
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2. APPROACH: Data Collection

Data Sources

o Focused experiments conducted at PDU in 2019 and 2020: switchgrass

o Historical data at PDU: switchgrass
o Discussions with operators of PDU

Case scenario
Bale moisture entering into piserocessing

National

Operating Dry bulk density (Ib/cubiteef) 9 9 9
conditions Moisture 25.0% 17.5% 10.0%
Moisture loss 4.77% 3.00% 0.50% Case scenario
Bale moisture entering into pre-processing
Dry matter loss 1.50% 1.50% 1.50%
Bulk density change (Ib/cubi€eet) -5.70 -6.43 -6.56
Process D50 (mm) 27 2 108 Operating conditions Moisture 19.5% 14.0% 9.50%
performance Moisture loss 4.0% 3.0% 0.70%
D90 (mm) 4.61 7.23 5.90
Dry matter loss 0.5% 0.5% 0.5%
D10 (mm) 0.45 0.59 0.47 24 > > >
Bulk density changelb/cubicfee! 4.14 5.13 5.61
Maximum infeed rate (dry tons/hour) 2.42 4.99 5.77 Y gelb Y
Process D50 (mm) 0.61 0.66 0.63
D90 (mm . 1.47 1.43
Operating Moisture 20.23% 14.50% 9.50% (mm) L)
conditions i i D10 (mm) 0.17 0.23 0.22
Bulk density (Ib/cubideef) 3.30 2.57 2.44
Maxi infeed rate (dry tons/hour; . b a7
Process Bypass 40.48% 44.98% 49.98% eximum | (ary ur) 175 3.09 576
Operating Moisture 15.5% 11.0% 8.80%
conditions Bulk density (Ib/cubideef) 7.44 7.70 8.05
Moisture loss 3.9% 1.50% 0.00%
Process Bulk density change (Ib/cubifeef) 34.12 33.86 33.51
performance
Maximum infeed rate (dry tons/hour) 3.68 4.20 5.25

Dry bulk density (Ib/cubibeef) 41.56 41.56 41.56
Durability 97.60% 97.60% 0.98
Moisture 10.7% 9.0% 8.80%

niversity of Arkansas/Ilda
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2. APPROACH: Experimental Setup

Product Characteristics:
1 200 bales of switchgrass

0 60 bales have low (L) moisture content

O 100 bales have medium (M) moisture content

Control strategies Biomass Feeding Patterns

40 bales have high (H) moisture content Baseline control Random sequences 1,..., 6
60L,100M,40H in this order
100M,60L,40H in this order

Proposed control 40H,60L,100M in this order

Performance Metrics: 40H,100M,60L in this order
6L,10M,4H X10 in this order

O Average feeding of reactor (Av. Feed.)

O Average inventory over planning horizon (Av. Inv.)

O Cost of operating the system ($/dry ton)

O Maximum inventory over planning horizon (Max. Inv.)
0 Processing time (minutes)

Q Variability in feeding of the reactor (Coef. Var.)

University of Arkansas/Idaho National Lab



2. APPROACH: Numerical Results

Job (bale) sequencing and inventory holding are strategies used in practice to
streamline processes.

Proposed control versus baseline control model.

Control
strategies

Feeding patterns

Unit Cost

($/dry ton)

Processing
Time (hours)

Av. Inv.
(dry tons)

Max. Inv.
(dry tons)

Av. Feed.
(dry tons/hour)

Coef. Var.

Random sequence 1 33.88 22.40 0.32 1.61 3.78 0.33
Random sequence 2 33.08 21.87 0.54 2.93 3.87 1.19
Baseline Random sequence 3 32.28 21.33 0.60 2.82 3.97 1.16
control Random sequence 4 33.88 22.40 0.41 2.42 3.78 0.30
Random sequence 5 33.08 21.87 3.72 5.94 3.87 1.69
Random sequence 6 32.28 21.33 0.69 2.87 3.97 1.14
60L,100M,40H 32.73 21.63 4.56 7.29 3.92 0.09
100M,60L,40H X 1 33.87 21.18 5.12 11.63 4.00 0.00
s 40H,60L,100M X 1 33.43 22.10 1.7 3.46 3.83 0.26
40H,100M,60L X 1 33.43 22.10 0.03 0.34 3.83 0.28
6L, 10M,4H X10 31.53 20.83 0.69 1.47 4.07 0.00

OSERVATIONS

o The proposed control leads up to 7.5% reduction in the unit cost of processing biomass.
o The proposed control leads to approximately 7.5% reduction of processing time.

o Short feeding patterns L — M — H perform the best in terms of costs and processing time.

o There are less variations in feeding of the reactor in the proposed process.

University of Arkansas/Idaho National Lab



2. APPROACH: Biomass Blending Model

ASSUMPTIONS

o One biomass feedstock is processed at a time; thus, each pellet is made of a single
feedstock.

o Pellets are stored in dedicated storage areas.

o In each time period, the blend of pellets (from different feedstocks) fed to the reactor
meets ash and carbohydrate content requirements.

Bale Input Fommm— n
—— DC1I ‘o[ Gl ]—».’ Separate —— DC2 DC3 >
N ’
I T T T -
|
i sC1 ——- M SC4 e SC3 e sC2 4—[ G2 }
[
\ﬁ DC: Drag Chain Conveyor
SC5 SC:  Screw Conveyor
G: Grinder
H: Hopper
e PP
DC 4 DC6 oy . .
dntl P: Pelleting Equipment
l l l M:  Metering Bin
1 52 Sa S: Storage Bin
l l 1 R Reactor
DC
5 7 —_
DCs DC 7 203 Current Process
- - Separation Process
—  ProposedProcess

The Proposed Process Design of PDU

University of Arkansas/Idaho National Lab



2. APPROACH: Experimental Setup

Biomass Characteristics
Biochemical Conversion

Process: Target Rates Biomass Carbohydrate
Feedstock Content (%)
Ash Carbohydrate
Content Content e L
12.2 57.4
7.4 % 591 % (3-P)
Corn stover
7.6 60.3
(2-P)
Switchgrass 6.4 66.6
Composition of Bales Miscanthus 25 81.7

Based on Moisture Level

| Low | Medium| High | Distribution of Nr. Of Bales

30% 50% 209

Moisture Level

50% 30% 20% Biomass
20% 30% 50% Feedstock

Corn stover

3 5 2
(3-P)
Corn stover
60 Bales 3 5 2
(2-P)
Switchgrass 3 5 2
Miscanthus 15 25 10

University of Arkansas/Idaho National Lab



2. APPROACH: Experimental Setup

Sequencing Based on Sequencing Based on

Problem Problem
Nr Moisture  Feedstock Nr Moisture Feedstock
1 3L 5M 2H 10 e
Moisture Sequence
10S 50M .
2 3L 2H 5M 1 10C2 10C3 L — low moisture
3L 5M 2H 10M 10C3 M — medium moisture
3 5M 2H 3L 12 sl Jhes H — high moisture
20M 10S
10S 20M
4 5M3L2H 10C2 30M 13 Sequence *
10C3
5 oH 3L 5M 14 Sequence ** Feeds.tock Sequence
M — miscanthus
6 2H SM 3L 15 L S — switchgrass
7 5L 3M 2H 16 M Sequence ** C2 — stover 2 pass
9 H o e, 18 Random  Random

Sequence*

10S-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C3-3M-2C3-1M-1C3)
(2M-1C2-4M-1C2-2M)-(2M-1C3-3M-2C3-1M-1C3)-10M-(2M-1C3-4M-1C3-2M)

Sequence**
10S-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C2-3M-2C2-1M-1C2)- (2M-1C2-4M-1C2-2M)
(2M-1C3-3M-2C3-1M-1C3)-10M-(2M-1C3-3M-2C3-1M-1C3)-(2M-1C3-4M-1C3-2M)

University of Arkansas/Idaho National Lab




2. APPROACH: Numerical Results

PROBLEM 1
Moisture Level: 3L 5M 2H and Feedstock: 10S 20M 10C2 30M 10C3

Dispatch Schedule Reactor Feed Rate and Input Rate -
5 ] —_— lReacttortfeed rate Processing
nput rate H
Miscanthus rate IS
41 _ 3.35 mg/hr.
= Switchgrass - £ |ndnd ok PR o 6 P
8 I A s V\\
¥ 2 + Reactor’s
& Com Stover (2-P) 1 | = ~ iahili
e £ 2 N reliability
is 90%.
Corn Stover (3-P) 1 - 1] S (o]
0 1 2 3 a4 5 & 7 8 9 1 U B °T 1 3 3 4 f & 7 & 3 mon v
Time {l'l] Time {h:l
Dispatching of Bales Feeding of the Reactor
Inventory Level
3 ) ) Blending Ratio
\...Tn Mmetering bin
= Corn Stover (3-P) 140 B Corn Sover (3-P)
4 1 — (Corn Stover (2-P) 120 B Corn Stover (2-P)
= "v\ﬁwitchgrass L S»{eitchgrass
E Missa,nEus 100 Miscanthus
= 3 ~ e A =
Z T~ Max Inv. of T m
-l ~ . . (=] |
= Miscanthus is 3.9mg B
2 24 \ J U 60
g 5 .
E ( K N "
14 Max Inv. of metering
L = — \ bin is 0.4mg ) 20 ‘ .
1] @M“ Ll '\" "-"h 0 T T T
] 1 2 3 4 5 & 7 8 9 10 1 12 01 2 E] &
Time {h) Time {h)

Inventory Level Blended Biomass Feeding the Reactor
University of Arkansas/Idaho National Lab



2. APPROACH: Numerical Results

Processing bale from
the same shipment or
the same supplier
creates a "long”
sequence.

DISPATCHING OF BALES

Dispatch Schedule

Miscanthus |

Switchgrass 1 | | i
comn stover (2.0 +—H-F— -+ -H-H |
comnstover (30 T H-

T T T T T T T T
0 1 2 i 4 5 & 7 B
Time (R}

L
9 o 11 12

Bale dispatching based
on a pre-determined
“short” sequence is

labor expensive.

A “Random” sequence
dispatches bales from
different shipments. No
particular order is
followed.

Random Sequence

Dispatch Schedule

Miscanthus

Switchgrass -

Corn Stover (2-P)

Corn Stover (3-P}

Dispatch Schedule

Miscanthus

Switchgrass 4

Feedstock

Corn Stover (2-F) 4

Corn Stover (3-F)

Time {h)

Long Sequence (P 10)

University of Arkansas/Idaho National Lab

Time {h)
Short Sequence (P 13)
Dispatch Schedule
Miscanthus

* Switchgrass -

o

i

w Corn Stover (2-P) 1 -

Corn Staver (3-P) 1 -

Time {h)

Long Sequence (P 8)




2. APPROACH: Numerical Results

Blended biomass
that meets process
requirements is fed
to the reactor every

time unit.

BIOMASS BLEND

Blending Ratio

The blends consist
mainly of miscanthus
because of its low
ash content.

Blending Ratio

1401 B o Sover (3-P)
BN Corn Stover (2-P)
120 1 B Switchgrass
Miscanthus
_ 100 -
#
& B0 A
8
=
8w
&
40 1
20 1 ‘
|
o 1 2
Time (h)
Blending Ratio
1401 B Comn Sover (3-P)
N Corn Stover (2-P)
120 1 B Spitchgrass
Miscanthus
_ 100 -
il
L 80
a2
[=
o
&
40 1
20 1

Time (h)

Long Sequence (P 10)
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&

]
[=]

140 B Corn Sover (3-P)
BN Corn Stover (2-P)
120 E Switchgrass
Miscanthus
. 100
#
& 80
B
[=
o 6D
&
40
20
D T T T T
0 7 B 3 1 11
Time {h)
Blending Ratio
140 EEE Corn Sover (3-P)
EEE Corn Stover (2-P)
120 E Switchgrass
Miscanthus
_ 100
=
& 80
pi]
=
o
| l
D

Time [h]

Long Sequence (P 8)




2. APPROACH: Numerical Results

INVENTORY LEVEL

Random sequ. } Inventory Level 5 Inventory Level

. . 5
[ max Inv. IS 2mg N ot oo === metering bin TR PO TR T TSRO OO OO st =2 L1+ 1 L SO
\‘\ = Corn Stover (3-P) = Corn Stover [3-P)
4 ™~ — Corn Stover (2-P) 41 — Corn Stover (2-P)
— \\ —— Switchgrass &5 —— Switchgrass
o N
B ~ ~ Miscanthus E Miscanthus
T3 ~ =5
2 ~o H
5 ~< _E"
E 2 A g 2
[=
1 i) TR 1
Long sequ. max I N
[ inv. is 4mg. 0 9’@ ‘AL R N 0!
\ o 1 2 3 4 5 & 7 B 9 10 11 12 o 1 2 3 4 5 6 T BN\N2 10 1 12
\ Time (h) Time (h) N
\
\ Random Sequence Short Sequence (P 13)
\ N
\{nventory Lewvel Inventory Level Short sequ.
> ' 5 max inv. is
o T Metering i OO OO UPUOO SOl L1112 111 X1 SO 0.4mg
\ — Corn Stover (3-P) — Corn Stover (3-P) = *
4 A | — Corn Stover (2-P) 4 1 —_Corn Stover (2-P)
—— Switchgrass — Switchgrass
Miscanthus Miscanthus
3 3

2

%]
L

Inventory Level img)
Inventory Level (mg)

g
\
11 T \
AR
X Fat ey i iy P L '
T T T T T T T T T T T
o 1 2 3 4 5 B 7 8 3 W 11

Time (h) Time {h)

Long Sequence (P 10) Long Sequence (P 8)
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2. APPROACH: Numerical Results

Feeding of the Reactor

Reactor Feed Rate and Input Rate Reactor Feed Rate and Input Rate
—— Reactor feed rate —— Reactor feed rate
51 I‘ Input rate 51 i Input rate
Random sequ. has N AR IL
up to 15% higher _ ‘ o, | TR TIY
processing rate £ . Ht—t——t e £,
then long sequ. s H H """"""""""""" £
2 5| 2 5
1 1 -
Proc. rate of 01 3 5 4 5 & 7 6 ¢ nou oD 01 2 3 4 & 7 8 5 DU oD
short sequ. is Time (h) Time (h)
12- 46% higher
than that of long Random Sequence Short Sequence (P 13)
and random
sequ.
Reactor Feed Rate and Input Rate Reactor Feed Rate and Input Rate
—— Reactor feed rate Redttor feed rate
'm“ ﬂ“‘ P"‘ Input rate Inpit rate
short sequ. is 17- IR IR IR T Y (TR O o e " T3 VST N P —
46% shorter than <

that of long sequ.

T T T T T T T T T T ! T T T T T T T T T T T
o 1 2 3 4 5 & 7T 8 % 1 11 12 0 1 2 3 4 5 [ 7 8 9 1w 11 1z
Time {h) Time {h)

Long Sequence (P 10) Long Sequence (P 8)
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