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The objective of this project is to reduce the cost of producing biofuels 
by designing a reliable, cost effective, sustainable, robust system for 
feeding of biomass feedstocks to the reactor via developing analytical 
models. 

Motivations
Variations in particle size, high moisture and 
ash contents lead to difficulties in handling and 
feeding biomass to a reactor. 

“…bulk solids handling and material flows 
through the system” has been identified as 
a critical component to achieve the 
design throughput of the conversion 
processes [3].

Project Overview
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Plugged screen in a grinder [2]

POET-DSM paused ethanol production in 2019 [1]
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I. The DEM model will allow us to:
o Gain an understanding of how biomass properties impact its flowability

and size reduction.
o Identify critical design parameters for equipment given biomass

properties and processing conditions.

II. The Analytical Model will allow us to:
o Gain an understanding of how biomass properties impact system

performance.
o Gain an understanding of how biomass blending impacts system

performance.

III. The validation effort at the INL PDU will allow us to:
Demonstrate that in the proposed system, the reactor’s reliability is
nearly 90% for biomass with 10-30% moisture and 5-15% ash contents.
This testing will be conducted for 60-80 hours, at a rate of 1 dry
tons/hour.

Project Overview

3
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Timeline
April 1, 2018
March 30, 2022

Quad Chart Overview
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Project Goal
Design a system which guarantees process 
reactor reliability of nearly 90% for infeed 
biomass with 10-30% moisture and 5-15% 
ash content.

End of Project Milestone
The proposed process design (developed 
using analytical models) is validated via 
experiments at INL’s PDU. 

The proposed process design identifies (i) 
process variables (i.e., system feed rate, 
screen size); and (ii) buffer location and 
size, which allows the system to achieve 
90% of reactor’s design throughput.  

Funding Mechanism
FOA Nr: DE‐FOA‐0001689
Topic Area: 4

FY 20 Costs Total Planned Funding
(FY 19-Project End 
Date)

DOE Funded $956,274 $1,799,998

Project Cost 
Share*

$147,016 $200,000

Partners 
University of Arkansas,
Clemson University, 
Idaho National Laboratory, 
University of Texas at San Antonio
Matera LLC
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Organizational Chart

1. Management

5

Process Integration

Responsibilities

Bi-monthly conference 
calls/webinars of the team with 
the Technical Manager, Project 
Monitor and Advisory Board.
Bi-weekly conference 
calls/webinars of the team.
Task-specific conference calls 
and weekly internal meetings 
with students and faculty. 
Visits to INL by university PIs 
(short-term visits) and by 
postdocs (work with INL PIs for 
an extended time) 

Management Approach

Advisory Board
Mr. Burciaga, Mr. Farris, Mr. Hartig

PDU Operator & 
INL Experts

Dr. Xia
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2. APPROACH: DEM

6

Bonded-sphere discrete element method (DEM)
• Particle mechanics-based numerical method
• Simultaneously capture complex particle shape, a wide range of

particle sizes, and particle deformability
• Effective and practical approach capable of simulating both biomass flow

and size reduction (lab and equipment scale)

DEM-based regression functions
• Optimization model uses regression functions to link biomass

characteristics to behavior
• DEM-based regression functions developed for predicting bulk densities (to

quantify flowability) and size reduction as a function of biomass
characteristics

DEM switchgrass particles Switchgrass image analysis
(Guo et al. 2020)
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2. APPROACH: DEM

7

Top challenges faced
o Very limited physical and mechanical characterization data
o Complex material behavior (nonlinear, history-dependent,

heterogeneous…) & inherent large variations
o DEM is computationally expensive
BP-1 Go/No-Go decision points and metrics
1) Performance of the DEM models to accurately predict biomass material

behavior in the proposed process.
• A systematic and quantitative evaluation of DEM performance against

analytical, empirical, and experimental results/data at the particle, lab,
and PDU scales. (this addresses some key 2019 Peer review
comments on DEM)

2) Usefulness and quality of data at INL
• Historical data (published and unpublished)
• New PDU test data (conducted at INL in 2019 and 2020)

We met both criteria and received the “Go” decision after BP-1. 
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2. APPROACH: Mathematical Models
Process Optimization Model

Biomass Blending Models

o A deterministic mixed-integer programming model
o A dynamic model of biomass properties, process variables, and buffer

location/size
o Minimizes processing time and maintains reactor utilization withing 90% of its

capacity.
o Evaluates sequencing of bales based on moisture level.

Stochastic Optimization Models

o An extension of the Process Optimization model.
o Identifies blends of stover, miscanthus and switchgrass to achieve targeted ash

and carbohydrate contents for biochemical conversion.

o An extension of the Process
Optimization model

o Evaluate stochastic variations of
biomass density, moisture content
and particle size on processing time
and reactor utilization.

Bale Sequencing
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2. APPROACH: Process Optimization

Reactor Feeding and Coefficient of 
Variation

Proposed Control

Reactor Target Rate of Proposed 
Control

No Buffer Capacity Expansions With Buffer Capacity ExpansionsBaseline Control

o The proposed control leads up to 7.5% reduction
in the unit cost of processing biomass.

o The proposed control leads to approximately
7.5% reduction of processing time.

o Short feeding patterns Low – Medium – High
bales perform the best in terms of costs and
processing time.

o There are less variations in feeding of the reactor in
the proposed process. 

OSERVATIONS Attribute Baseline Control Proposed Control

Control variables

Bale infeed rate, 
discharge rates from 
storage units, 
discharge rate from 
pelleting

Buffer 
size/location, bale 
infeed rate, 
discharge rates 
from storage units, 
discharge rate from 
pelleting

State variables Amount of processed material in each 
location during each time step

Bale sequence Random

Bale sequencing 
is guided by 
moisture level and 
target feed rate to 
the reactor

Target feed rate 
to the reactor

Feeding of the system 
is  controlled by 
product characteristic 
and target rate of the 
reactor.  

Feeding of the 
system leads to  
maximization of 
throughput over 
the planning 
horizon.
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2. APPROACH: Biomass Blending

Inventory Level

Short Feeding Patterns

Reactor Feeding Rate

o Processing time of short sequences is 17- 46%
shorter than that of long sequences.

o Processing rate of short sequences is 12- 46%
higher than that of long sequences.

o The maximum inventory level of short sequences is
4 times lower than that of long sequences.

o Creating a short sequence is labor intensive.

OSERVATIONS

Long Feeding Patterns Short Feeding PatternsLong Feeding Patterns

Bale Dispatch
Short Feeding Patterns

Long Feeding Patterns
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2. APPROACH: Challenges Faced

o Modeling of equipment clogging is challenging because of lack of data.
o PDU operator adjusts processing speed of equipment to reduce clogging.

o No external sources of data are identified.

o Modeling of the relationship among equipment setting,
infeed rate, and particle size distribution is challenging
because of lack of data.
o Extensive experimental data is needed to develop models

which describe these relationships.

o Modeling of the system for miscanthus is challenging because of lack of
data.
o We do not have historical data from the PDU.
o Miscanthus is an expensive product, thus, conducting experiments to collect the

necessary data is not feasible.

o The development of the stochastic optimization models is impacted by lack of
data necessary to develop distributions of problem parameters.

Power Logger Data
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o Utilizing the results of the analytical models to guide
planning of proposed process control can lead to:
o Reduced process time and costs
o Reduced impact of feedstock variations on reactor’s uptime
o Prevent equipment clogging

o The results of this research are disseminated via:
o 2 refereed journal publications
o 4 manuscripts submitted for publication
o 2 conference proceedings
o 8 presentation in professional conferences

3. IMPACT

12
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I. Publications
o Guo, Y., Chen, Q., Xia, Y., Westover, T., Eksioglu, S., & Roni, M. “Discrete element modeling

of switchgrass particles under compression and rotational shear”. Biomass and Bioenergy,
141, 105649, 2020. https://doi.org/10.1016/j.biombioe.2020.105649 (Tasks 2.2 & 2.3).

o Liu, D., S.D. Ekşioğlu, M. Roni, F. Kucuksayacigil “Optimization Models for Streamlining of
Biomass Processing Systems,” Submitted to Proceedings of the Institute of Industrial and
Systems Engineers Annual Conference (May 2021)  (Tasks 4.3 & 4.4).

o Kucuksayacigil, F., S.D. Eksioglu, M. Roni, Q. Chen, K. Castillo “A reliable biomass process
design in an integrated biorefinery,” Proceedings of the Institute of Industrial and Systems
Engineers Annual Conference (Nov. 2020) (Tasks 4.2 & 4.4).

o Kucuksayacigil, F., M. Roni, S.D. Eksioglu, “Optimal Control of Feedstock Preprocessing to
Handle Variations in Feedstock Characteristics and Reactor In-Feed Rate,” Submitted to
International Journal of Energy, 2020 (Task 4.2 & 4.4).

o Gulcan, B., S.D. Eksioglu, Y. Song, M.D. Roni “Optimization Model for Integrated Biorefinery
Operations,” Submitted to Optimization Letters, 2021 (Tasks 4.2 & 4.4).

o Xia, Y., Z. Lai, T. Westover, J. Klinger, H. Huang and Q. Chen, “Discrete element modeling of
deformable pinewood chips in cyclic loading test”, Powder Technology, 345: 1-
14, https://doi.org/10.1016/j.powtec.2018.12.072, 2019. (Task 2.2)

o Guo, Y., Chen, Q., Xia, Y., Klinger, J., & Thompson, V. “A nonlinear elasto-plastic bond model
for the discrete element modeling of woody biomass particles”, Powder Technology, in revision,
2021. (Task 2.2)

o Lai, Z., Y. Xia, H. Huang, T. Westover and Q. Chen, “Discrete element modeling of granular
hopper flow of irregular-shaped deformable particles”, in review, 2019. (Tasks 2.2 & 2.3)

3. IMPACT

13

https://doi.org/10.1016/j.biombioe.2020.105649
https://doi.org/10.1016/j.powtec.2018.12.072
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II. Presentations
o Gulcan, B., S.D. Eksioglu, Y. Song, M. Roni, Q. Chen “Optimization models for integrated biorefinery

operations,” Virtual Annual Meeting of INFORMS, November 2020 (Tasks 4.2 & 4.4).
o Kucuksayacigil, F., M. Roni, S.D. Eksioglu, Q. Chen, K. Castillo “Optimization of biomass process

design in an integrated biorefinery,” Virtual Annual Meeting of INFORMS, November 2020 (Tasks 4.2
& 4.4).

o Kucuksayacigil, F., S.D. Eksioglu, M. Roni, Q. Chen, K. Castillo “A reliable biomass process design in
an integrated biorefinery,” Virtual IISE Annual Conference, November 2020 (Tasks 4.2 & 4.4).

o Chen, Q., Guo, Y., Tasnim, Z., Xia, Y., Roni, M., & Eksioglu, S. “Discrete element modeling of
switchgrass particles for integrated process optimization”. Virtual AIChE 2020 Annual Meeting,
November 2020 (Tasks 2.2 & 2.3).

o B. Gulcan, S.D. Eksioglu, M. Roni, K. Castillo, “Integrated Process Optimization for Biochemical
Conversion,” IISE Annual Meeting, Orlando, FL (2019). (Task 4.1)

o Y. Guo, Q. Chen, Y. Xia, M. Roni and S. Eksioglu, “Discrete element modeling of chopped
switchgrass: particle size and shape effects on bulk mechanical properties”, Engineering Mechanics
Institute and Geo-Institute Specialty Conference, Pasadena, CA, (2019). (Tasks 2.2 & 2.3)

o Y. Xia, Z. Lai, Q. Chen, T. Westover, J. Klinger and H. Huang, “Discrete element modeling of granular
flow of flexible woody biomass particles”, Engineering Mechanics Institute and Geo-Institute Specialty
Conference, Pasadena, CA, (2019). (Tasks 2.2 & 2.3)

o Z. Lai, Y. Xia, H. Huang, T. Westover and Q. Chen, “Numerical characterization of biomass flowability
in biorefinery”, Idaho National Laboratory Annual Intern Expo, Idaho Falls, ID, (2018). (Task 2.2)

3. IMPACT

14
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4. PROJECT OUTCOMES

15

March 2021
Work completed
Work didn’t start
Work in-progress

o BP 1 tasks are completed.

o BP 1 Go-No-Go is completed.

o BP 2 work will be completed by May 15th.

o We are in the process of scheduling our BP 2 Go-No-Go.
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4. PROJECT OUTCOMES: DEM

16

Technical accomplishments (DEM)
o A bonded-sphere DEM model developed and validated specifically for

switchgrass (published in Biomass & Bioenergy: Guo et al. 2019)
o DEM-based regression functions for predicting bulk densities (used to

quantify flowability) as a function of biomass particle sizes and moisture
contents, and functions validated with PDU data.

Functions for predicting loose and tapped bulk densities

Prediction sets Prediction sets
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4. PROJECT OUTCOMES: Math Model

17

Technical accomplishments (Math Model) 
o A deterministic model is developed to evaluate the impact of buffer size

and location, and moisture level on processing time and reactor’s utilization
of switchgrass  (submitted to International Journal of Energy:
Kucuksayacigil et al. 2020).

o A biomass blending model is developed to evaluate the impact of biomass
characteristics (ash and carbohydrate contents) on processing time and
reactor’s utilization of switchgrass (submitted to Proceedings of IISE
Annual Conference: Liu et al. 2021).

o A stochastic model to evaluate the impact of biomass moisture level and
particle size distribution on processing time and reactor utilization using
data about switchgrass (submitted to Optimization Letters: Gulcan et al.
2021.)
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I. The DEM models show:
o Bonded-sphere DEM developed and validated that capture key biomass

particle characteristics
o DEM-based functional relationships capable of predicting biomass

flowability (quantified using bulk density) as a function of biomass
characteristics; validation using PDU data showed the accuracy met the
criteria set in Go/No-Go.

o DEM grinding models account for physics of particle breakage and could
predict the entire output particle size distribution.

II. The analytical models show:
o The proposed system control leads up to 7.5% reduction in the unit cost

and processing time of biomass as compared to basic control.
o Using short sequences of bales, created based on moisture level, leads to

reductions of processing time and cost while maintaining a continuous flow
of biomass to the reactor.

o Blending of biomass allows the system to meet process requirements at all
time.

5. PROJECT SUMMARY

18
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[1] http://ethanolproducer.com/articles/15344/zero-to-10-million-in-5-years.
[2] Neal Yancey and Jaya Shankar Tumuluru, Idaho National Laboratory.
[3] DOE (2016). "Biorefinery Optimization Workshop Summary Report".  Chicago, Illinois, U.S. Department of Energy.

REFERENCES

19
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Additional Slides DEM
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APPROACH: DEM

21

• DEM calibration using INL mechanical test 
data of switchgrass

Ring shear test

Young’s modulus calibration

Compression test

Particle friction calibration Particle density calibration

Bulk density test
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• Bulk Density prediction (after Grinder -1): 

DEM-based regression models

22

Infer ranges from 
PDU test data 
(2019)

Fitting particle 
length and width

Generating 
particle size 
distribution for 
DEM 

+ 

DEM simulation 
(30 cases) and 
regression of 
ρloose & ρtapped

Obtaining dry 
ρloose & ρtapped 
values 

Obtaining wet 
ρloose & ρtapped

using

Regression 
models 

*Regression model predicts wet ρloose & ρtapped values.
*Same methodology is followed for prediction of ρloose & ρtapped  after Grinder -2 

21
0 
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Validation of DEM mdoel with PDU test

23

• Validation of DEM regression model :

After Grinder – 2 : After Grinder -2 :  

After Grinder -1 :  
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• Grinder -2 model

DEM grinding model

24

G-2 PDU equipment G-2 PDU measurements STL files G-2 model

• Scaling law applied
• Same particle rate
• Same screen opening to particle 

size ratio
• Particle templates : 4 , 7, 10 mm
• Without pan and increased 

domain cases

Particle size distribution and size parameters match quite well with SF = 4
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Additional Slides Math Model
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2. APPROACH: Mathematical Model

𝑍𝑍𝑡𝑡: Infeed rate of the system at period 𝑡𝑡 (dry tons)
𝑋𝑋𝑖𝑖𝑖𝑖: Outflow from equipment 𝑖𝑖 at period 𝑡𝑡 (dry tons)
𝑀𝑀𝑖𝑖𝑖𝑖: Inventory level in equipment 𝑖𝑖 at period 𝑡𝑡 (dry tons)

Control Variables:

𝑉𝑉𝑖𝑖𝑖𝑖: Speed of the conveyor belt at period 𝑡𝑡 (m)

Problem Parameters:
w, h : height (m) and width (m) of a bale
d    : density of a bale (dry tons/m3) 
𝛾𝛾𝑖𝑖𝑖𝑖 :  amount of biomass per m of conveyor belt

e.g.,                              (tons/m)𝛾𝛾1𝑡𝑡 = 𝑤𝑤 × ℎ × d

Model Constraints:

𝑍𝑍𝑡𝑡 ≤ 𝛾𝛾1𝑡𝑡𝑉𝑉1𝑡𝑡 .

The amount  of biomass fed to the system depends on the 
speed of conveyor belt (𝑉𝑉1𝑡𝑡) and biomass characteristics (d).  

A.     Operational constraints (∀ 𝑡𝑡 ∈ 𝑇𝑇):

𝑋𝑋𝑖𝑖𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖 ,
B.    Capacity constraints (∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇): 

𝑈𝑈𝑖𝑖:    Processing capacity of equipment i (dry tons)
𝐼𝐼:    Set of equipment in the facility

The amount  of biomass processed and inventoried is limited by 
processing/storage capacity of equipment.  

𝑀𝑀𝑖𝑖𝑖𝑖 ≤ 𝑈𝑈𝑖𝑖 .



Click to edit Master title style

University of Arkansas/Idaho National Lab

Model Constraints:

Storage: The amount  of inventory in the current period 
depends on the inventory from the previous period, the flow 
in, and the flow from the equipment in the current period.  

C.     Inventory balance constraints (∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇):

𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑖𝑖−1 + 𝑋𝑋𝑖𝑖−1𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑖𝑖 .

Conveyors: The amount of flow from a conveyor equal the 
amount to this conveyor.   

D.     Flow balance constraints (∀ 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇):
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖−1,𝑡𝑡 .

E.    Reliability constraints (∀ 𝑡𝑡 ∈ 𝑇𝑇):

𝑋𝑋𝑟𝑟𝑟𝑟 ≤ 𝑈𝑈𝑟𝑟 ,
𝑋𝑋𝑟𝑟𝑟𝑟≥ 𝐿𝐿𝑟𝑟 ,

�1
𝑇𝑇�𝑡𝑡=1

𝑇𝑇
𝑋𝑋𝑟𝑟𝑟𝑟 = 𝑅𝑅.

Reactor: 
r – index representing the reactor
Ur – processing capacity
Lr – lower bound
R - targeted processing rate 

F.    Non-negativity and integer constraints.

Objective:
Minimize system wide costs

Notice:
o Energy costs are in $/hour:

By minimizing energy costs, we are also minimizing 
processing time

o Storage costs:
Inventory holding costs and amortization cost of new 
storage equipment

2. APPROACH: Mathematical Model
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2. APPROACH: Experimental Setup

Attribute Baseline Control Proposed Control

Control variables

Bale infeed rate, 
discharge rates from 
storage units, discharge 
rate from pelleting

Buffer size/location, 
bale infeed rate, 
discharge rates from 
storage units, 
discharge rate from 
pelleting

State variables Amount of processed material in each location 
during each time step

Bale sequence Random

Bale sequencing is 
guided by moisture 
level and target feed 
rate to the reactor

Target feed rate to 
the reactor

Feeding of the system is  
controlled by product 
characteristic and target 
rate of the reactor.  

Feeding of the system 
leads to  
maximization of 
throughput over the 
planning horizon.

Baseline Control Proposed Control

Capacities of storage units 
are not expanded

Infeed of system is not
driven by the feeding of 

reactor.

Capacities of storage units 
can be expanded

Infeed of system is driven by 
the feeding of the reactor.

Baseline Control Proposed Control
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2. APPROACH: Data Collection

29

Data Sources
o Focused experiments conducted at PDU in 2019 and 2020: switchgrass
o Historical data at PDU: switchgrass
o Discussions with operators of PDU

Case scenario
Bale moisture entering into pre-processing

High
25%

Medium
17.5%

Low
10%

Stage-1 Size Reduction

Operating 
conditions

Dry  bulk density  (lb/cubicf eet) 9 9 9

Moisture 25.0% 17.5% 10.0%

Process 
perf ormance 

Moisture loss 4.77% 3.00% 0.50%

Dry  matter loss 1.50% 1.50% 1.50%

Bulk density  change (lb/cubicf eet) -5.70 -6.43 -6.56

D50 (mm) 1.77 2.31 1.94

D90 (mm) 4.61 7.23 5.90

D10 (mm) 0.45 0.59 0.47

Maximum in-f eed rate (dry  tons/hour) 2.42 4.99 5.77

Separations

Operating 
conditions

Moisture 20.23% 14.50% 9.50%

Bulk density  (lb/cubicf eet) 3.30 2.57 2.44

Process 
perf ormance 

By pass 40.48% 44.98% 49.98%

Moisture loss 0.71% 0.51% 0.00%

Case scenario
Bale moisture entering into pre-processing

High
25%

Medium
17.5%

Low
10%

Stage-2 Size Reduction

Operating conditions Moisture 19.5% 14.0% 9.50%

Process 
perf ormance 

Moisture loss 4.0% 3.0% 0.70%

Dry  matter loss 0.5% 0.5% 0.5%

Bulk density  change (lb/cubic f eet) 4.14 5.13 5.61

D50 (mm) 0.61 0.66 0.63

D90 (mm) 1.49 1.47 1.43

D10 (mm) 0.17 0.23 0.22

Maximum in-f eed rate (dry  tons/hour) 1.75 3.09 5.76

Densification 

Operating 
conditions

Moisture 15.5% 11.0% 8.80%

Bulk density  (lb/cubicf eet) 7.44 7.70 8.05

Process 
perf ormance 

Moisture loss 3.9% 1.50% 0.00%

Bulk density  change (lb/cubicf eet) 34.12 33.86 33.51

Maximum in-f eed rate (dry  tons/hour) 3.68 4.20 5.25

Pellet Property

Dry  bulk density  (lb/cubicf eet) 41.56 41.56 41.56

Durability 97.60% 97.60% 0.98

Moisture 10.7% 9.0% 8.80%
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2. APPROACH: Experimental Setup 

Control strategies Biomass Feeding Patterns

Baseline control Random sequences 1,…, 6

Proposed control

60L,100M,40H in this order

100M,60L,40H in this order

40H,60L,100M in this order

40H,100M,60L in this order

6L,10M,4H X10 in this order

Product Characteristics:

Performance Metrics:
Average feeding of reactor (Av. Feed.)

Average inventory over planning horizon (Av. Inv.)

Cost of operating the system ($/dry ton)

Maximum inventory over planning horizon (Max. Inv.)

Processing time (minutes)

Variability in feeding of the reactor (Coef. Var.)

 200 bales of switchgrass

 60 bales have low (L) moisture content

 100 bales have medium (M) moisture content

 40 bales have high (H) moisture content
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2. APPROACH: Numerical Results

o The proposed control leads up to 7.5% reduction in the unit cost of processing biomass.  

o The proposed control leads to approximately 7.5% reduction of processing time.

o Short feeding patterns L – M – H perform the best in terms of costs and processing time.

o There are less variations in feeding of the reactor in the proposed process.

OSERVATIONS

Control 
strategies

Feeding patterns Unit Cost 
($/dry ton)

Processing 
Time (hours)

Av. Inv. 
(dry tons)

Max. Inv. 
(dry tons)

Av. Feed. 
(dry tons/hour)

Coef. Var.

Baseline 
control

Random sequence 1 33.88 22.40 0.32 1.61 3.78 0.33

Random sequence 2 33.08 21.87 0.54 2.93 3.87 1.19

Random sequence 3 32.28 21.33 0.60 2.82 3.97 1.16

Random sequence 4 33.88 22.40 0.41 2.42 3.78 0.30

Random sequence 5 33.08 21.87 3.72 5.94 3.87 1.69
Random sequence 6 32.28 21.33 0.69 2.87 3.97 1.14

Proposed 
control

60L,100M,40H 32.73 21.63 4.56 7.29 3.92 0.09

100M,60L,40H  X 1 33.87 21.18 5.12 11.63 4.00 0.00

40H,60L,100M  X 1 33.43 22.10 1.17 3.46 3.83 0.26

40H,100M,60L  X 1 33.43 22.10 0.03 0.34 3.83 0.28

6L, 10M, 4H     X10 31.53 20.83 0.69 1.47 4.07 0.00

Proposed control versus baseline control model.

Job (bale) sequencing and inventory holding are strategies used in practice to 
streamline processes.
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2. APPROACH: Biomass Blending Model

o One biomass feedstock is processed at a time; thus, each pellet is made of a single 
feedstock.

o Pellets are stored in dedicated storage areas.
o In each time period, the blend of pellets (from different feedstocks) fed to the reactor 

meets ash and carbohydrate content requirements. 

ASSUMPTIONS

The Proposed Process Design of PDU
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2. APPROACH: Experimental Setup 

Distribution of Nr. Of Bales  

Biomass Characteristics
Biochemical Conversion

Process: Target Rates

Composition of Bales
Based on Moisture Level

Low Medium High

30% 50% 20%

50% 30% 20%

20% 30% 50%

60 Bales
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2. APPROACH: Experimental Setup 

10S-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C3-3M-2C3-1M-1C3)
(2M-1C2-4M-1C2-2M)-(2M-1C3-3M-2C3-1M-1C3)-10M-(2M-1C3-4M-1C3-2M)

Sequence*

Sequence**
10S-(2M-1C2-3M-2C2-1M-1C2)-(2M-1C2-3M-2C2-1M-1C2)- (2M-1C2-4M-1C2-2M)
(2M-1C3-3M-2C3-1M-1C3)-10M-(2M-1C3-3M-2C3-1M-1C3)-(2M-1C3-4M-1C3-2M)

Moisture Sequence
L – low moisture
M – medium moisture
H – high moisture

Feedstock Sequence
M – miscanthus
S – switchgrass
C2 – stover 2 pass
C3 – stover 3 pass
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2. APPROACH: Numerical Results
PROBLEM 1

Dispatching of Bales Feeding of the Reactor

Inventory Level Blended Biomass Feeding the Reactor

Moisture Level: 3L 5M 2H and Feedstock: 10S 20M 10C2 30M 10C3  

Processing 
rate is 

3.35 mg/hr.

Reactor’s 
reliability 
is 90%.

Max Inv. of 
Miscanthus is 3.9mg 

Max Inv. of metering 
bin is 0.4mg
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2. APPROACH: Numerical Results
DISPATCHING OF BALES

Random Sequence
Bale dispatching based 

on a pre-determined 
“short” sequence is 

labor expensive.

Short Sequence (P 13)

Long Sequence (P 10) Long Sequence (P 8)

Processing bale from 
the same shipment or 

the same supplier 
creates a "long” 

sequence.

A “Random” sequence 
dispatches bales from 
different shipments. No  

particular order is 
followed.
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2. APPROACH: Numerical Results
BIOMASS BLEND

Random Sequence Short Sequence (P 13)

Long Sequence (P 10) Long Sequence (P 8)

Blended biomass 
that meets process 
requirements is fed 
to the reactor every 

time unit.

The blends consist 
mainly of miscanthus

because of its low 
ash content. 
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2. APPROACH: Numerical Results
INVENTORY LEVEL

Random Sequence

Random sequ. 
max inv. is 2mg.

Short sequ. 
max inv. is 

0.4mg.

Short Sequence (P 13)

Long Sequence (P 10) Long Sequence (P 8)

Long sequ. max 
inv. is 4mg.
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2. APPROACH: Numerical Results
Feeding of the Reactor

Random Sequence Short Sequence (P 13)

Long Sequence (P 10) Long Sequence (P 8)

Random sequ. has 
up to 15% higher 
processing rate 
then long sequ.

Proc. rate of 
short sequ. is 
12- 46% higher 
than that of long 
and random 
sequ.

Proc. time of 
short sequ. is 17-
46% shorter than 
that of long sequ.
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