

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Advanced Manufacturing and Sustainable Chemistry

Valri Lightner, Deputy Director, Advanced Manufacturing Office G. Jeremy Leong, Technology Manager, Advanced Manufacturing Office November 17, 2020

EERE's Advanced Manufacturing Office (AMO)

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY		Advanced Manufacturing Office		BUDGET \$395M FY20
WHAT	Partner with in	dustry, academia, states,	and Natio	nal Laboratories

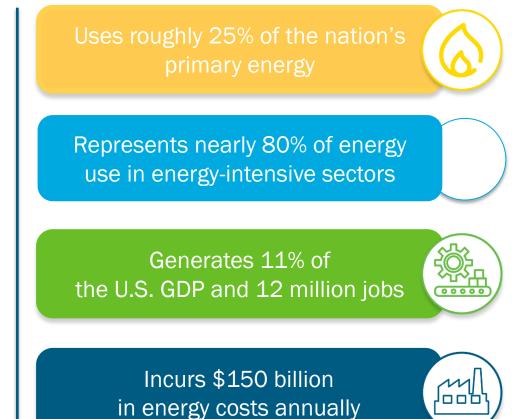
to catalyze R&D and the adoption of advanced manufacturing technologies and practices

WE

DO

AMO Guiding Principles

AMO works to increase energy and material efficiency in manufacturing to drive energy productivity and economic growth.


A

G

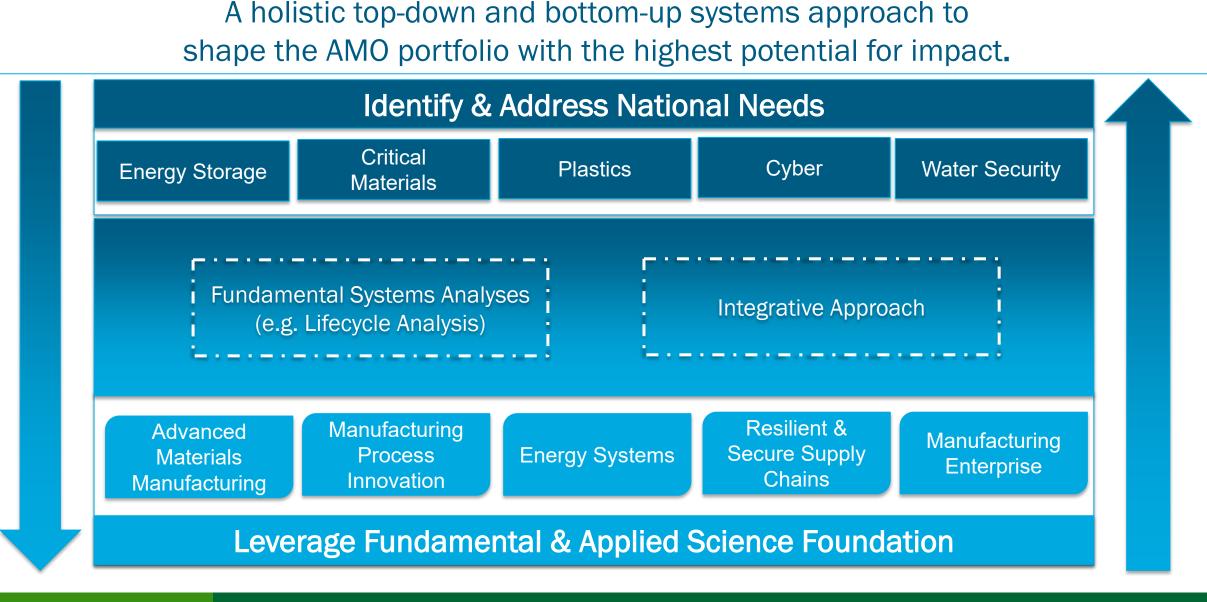
0

A

L S

- Improve the productivity, competitiveness, energy efficiency, and security of Μ U.S. manufacturing 0
 - Reduce the life cycle energy and resource impacts of manufactured goods
 - Leverage diverse **domestic energy resources** and materials in U.S. manufacturing, while strengthening environmental stewardship
 - Transition DOE-supported innovative technologies and practices into U.S. manufacturing capabilities
 - Strengthen and advance the **U.S. manufacturing workforce**

Μ

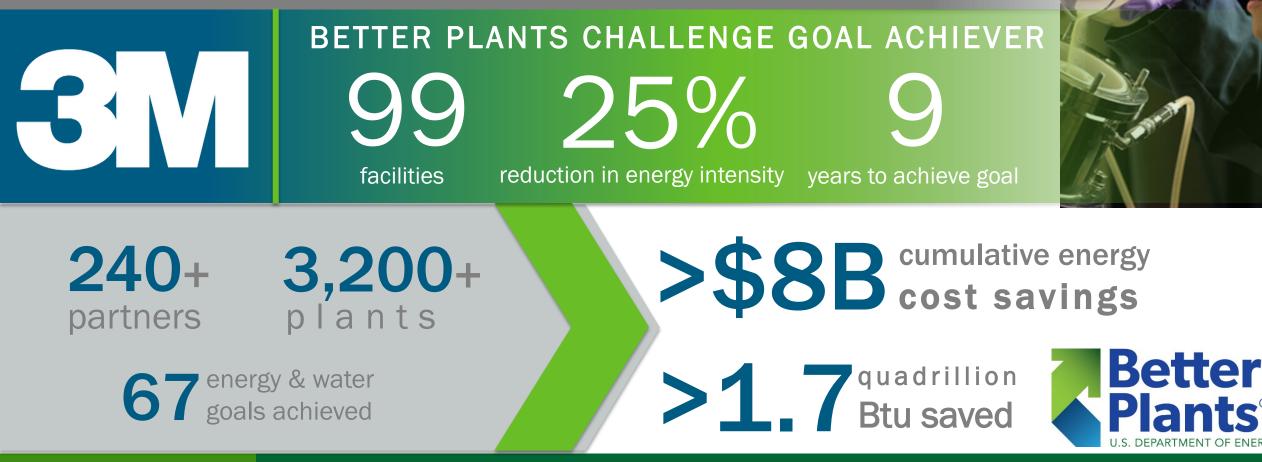

Α

Ν

U F

A C T

Framework to Shape AMO's Portfolio



U.S. DEPARTMENT OF ENERGY

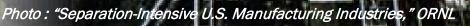
Better Plants Program

Public-private partnerships to help manufacturers and industrial organizations set and achieve long-term energy intensity reduction goals through:

- Technical assistance and in-plant training
- Access to National Laboratory resources, software, and instrumentation

High Performance Computing (HPC)

AMO encourages energy intensive industries to apply to use HPC tools to reduce manufacturing process energy intensity.


- Up to \$300,000 per award with at least 20% cost-share
- Manufacturers are paired with National Laboratory experts
- DOE encourages partnerships with universities and nonprofits in federally designated Opportunity Zones and/or Historically Black Colleges and Universities

COMING SOON: HPC FALL SOLICITATION

ENERGY-EFFICIENT ALTERNATIVE SEPARATIONS

- Develop a machine-learning algorithm that can be run off of a desktop computer to replace computationally intensive models
- Rationally design new materials and processes capable of highly-selective, low energy separations
- Increase productivity in other separation processes using similar technologies

Ε

Х

Α

Μ

Ρ

Ε

On the Horizon

ENGAGING WITH AMO

- Participate in upcoming topic-specific and multi-topic funding opportunities
- Respond to Requests for Information to inform R&D portfolio planning

- Register and attend additional **stakeholder workshops** for in-depth discussions around current and emerging challenges and opportunities in:
 - Thermal Process Intensification
 - Next Generation of U.S. Manufacturing
 - Workforce Development
 - Semiconductor Manufacturing
 - Critical Materials Analysis

To learn more and subscribe for updates from AMO, visit manufacturing.energy.gov.

Sustainable Chemistry and AMO Goals

More than 95% of all manufactured products rely on chemistry.

THE CHEMICAL INDUSTRY

Consumed more than **Quadrillion BTU** in 2018

Will grow to consume >30% more energy by 2030

Improvements to chemical manufacturing processes could reduce energy intensity 20-40%

by 2050

Sustainable chemistry can improve lifecycle energy for all manufactured goods, and competitiveness for the entire manufacturing industry.

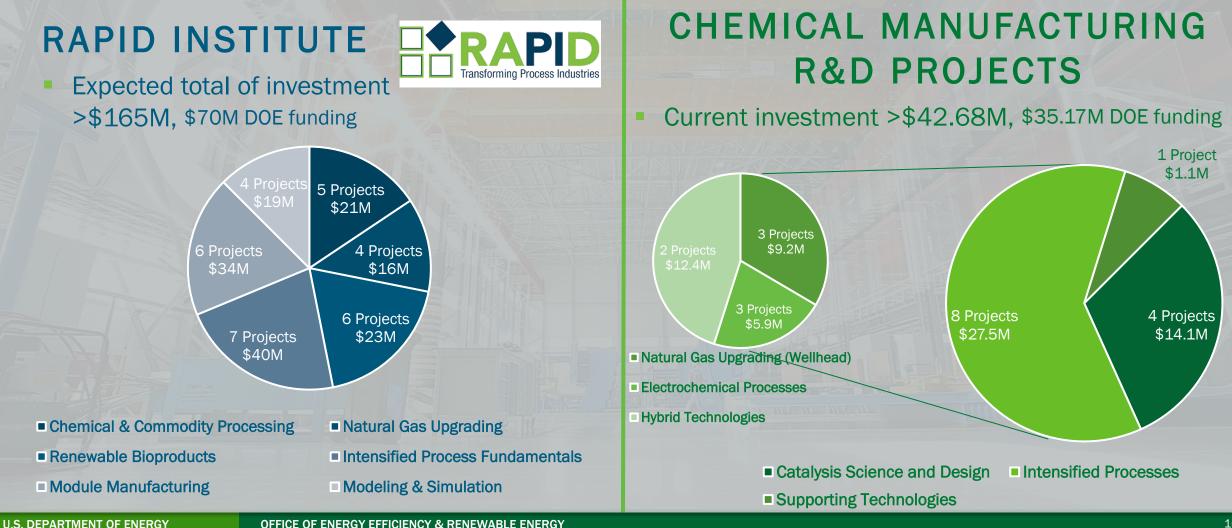
BANDWIDTH STUDIES IDENTIFY HIGH IMPACT AREAS

CHEMICAL MANUFACTURING

Iron & Steel

Pulp & Paper

Composites

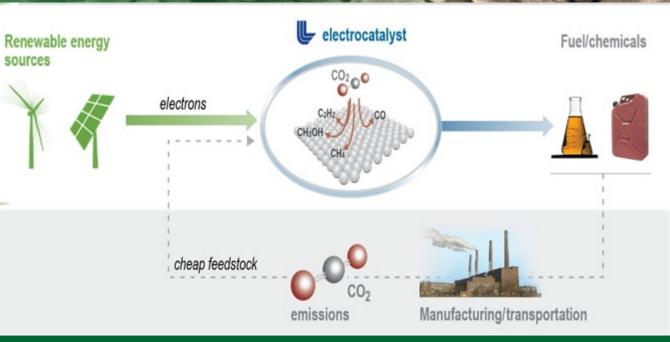

Refining

AMO R&D Highlights

G. Jeremy Leong, Technology Manager, AMO

Process Intensification / Chemical Manufacturing: AMO Portfolio

AMO invested more than \$105M in FY20 through its R&D projects and consortia pillars | \$207M grand total investments, including non-federal cost share



Project Highlight: One-step Electrochemical CO₂ to Fuel Conversion

- Ethylene, a high-volume chemical, is produced by steam cracking
 the most energy-intensive steps in the petrochemical industry.
- This project developed a rational design platform and identified a thermodynamically stable copper-based dilute alloy catalyst for one-step electrochemical CO₂ reduction to fuels and feedstock chemicals.

LAWRENCE LIVERMORE NATIONAL LABORATORY WITH OPUS 12, TOTAL

- Improves the energy efficiency of one-step electrochemical ethylene production by more than 15%
- Increases material productivity through a highly selective catalyst design that limits byproducts
- Boosts competitiveness by offering a scalable, decentralized method to turn CO₂ into highvolume chemicals

Μ

Ρ

Α

С

Project Highlight: A New Pilot Process for Ethylene Production

- This project worked to develop oxygen transfer agents (OTAs) to convert ethane to ethylene *via* the selective combustion of hydrogen in the presence of hydrocarbon feed and products.
- Results from pilot-scale testing indicate that a single Integrated Fluidized Bed Hydrogen Combustion (IFBHC) unit may be able to replace several traditional boilers at the commercial scale.

ECOCATALYTIC WITH DOW AND SOUTHWEST RESEARCH INSTITUTE

- Demonstrated the viability of a pilot-scale plant to produce ethylene and:
 - Improves energy efficiency by 46% 58% compared to conventional methods
 - Bolsters competitiveness for chemical manufacturers through 80% fewer CO₂ emissions and nearly 100% NOx reductions

N

Project Highlight: Catalyst Enhancements for Efficient Chemical Manufacturing

Intelligent design of catalysts enables diverse and robust chemical manufacturing to:

- enhance resilience to operational variability, and
- reduce the energy footprint of a wide array of commodity and specialty chemical manufacturing processes.
- This project uses atomic layer deposition to increase catalyst durability and reaction selectivity to reduce the energy requirements of high-temperature chemical reactions.

ARGONNE NATIONAL LABORATORY WITH FORGE NANO INC. AND HONEYWELL UOP

- **Demonstrates energy savings** of 35 50% of the maximum achievable improvements for propylene production
- Increases productivity by improving catalyst selectivity and longevity, reducing byproducts
- Aims to eliminate a separation unit to improve the competitiveness of chemical manufacturers

Μ

Ρ

Α

С

Sustainable Chemistry

Uelectricity

WORKSHOP OBJECTIVE

Identify opportunities, needs, and barriers to incorporate sustainable chemistry processes and practices into the manufacturing of consumer and commercial products.

OUTCOMES

- Gain insight into how sustainable chemistry is being incorporated into consumer and commercial manufacturing processes
- Identify manufacturing-related hurdles into incorporating sustainable chemistry technologies
- Prioritize R&D needs to advance sustainable chemistry in manufacturing within the AMO mission space

industria

Thank you

DOE Management, Planning, and Facilitation Teams:

Valri Lightner

Isaac Chan Jeremy Leong

Felicia Lucci

Theresa Miller

GC3 Co-hosts: Planning and Execution

Michele Jalbert

Joel Tickner

Sabine Brueske Diane Sellers Emmanuel Taylor Scott Morgan Joan Pellegrino

For additional information and to subscribe for updates: <u>manufacturing.energy.gov</u>

Jennifer Landry

Julie Manley

greenchemistryandcommerce.org

Closing Remarks

G. Jeremy Leong, Technology Manager, AMO

Meeting Wrap-up/Next Steps

Uelectricity

WORKSHOP OBJECTIVE

 Identify opportunities, needs, and barriers to
 incorporate sustainable chemistry processes and practices into the manufacturing of consumer and commercial products.

PNEXT STEPS

Pre-workshop questionnaire will be open until 20th
 November

Workshop slides and materials will be posted on website within the next couple of weeks

- Email will be sent out to all attendees
- Attendees will be sent a draft meeting report mid-late December for input/edits
 - Opportunity to provide input/edits for 2 weeks
 - Final publication mid-late January

industria

Thank you

American Chemistry Council (ACC)	Croda	New Balance
American Chemical Society (ACS): Green Chemistry Institute (GCI)	Dow Chemical Company	Nike
American Institute of Chemical Engineers (AIC	DuPont	Novozymes
American Institute of Chemical Engineers (AIC Rapid Advancement in Process Intensification (F	Estee Lauder	Procter & Gamble
and Institute for Sustainability (IfS)	Ford Motor Company	P2 Science, Inc.
ANGUS Chemical Company	General Motors	Reckitt Benckiser (RB)
B. Braun Medical Inc.	Hasbro	Sironix Renewables
BASF	Hexion Inc.	Steelcase
Beautycounter	Johnson & Johnson	Target Corporation
Cargill	Kalion, Inc	Tarkett
Checkerspot	Levi Strauss & Co.	The LEGO Group
Chemours	Lowes	Walmart
Cleanbay Renewables	MilliporeSigma	
Covestro	National Association of Manufacturers (NAM)	