INCREASE YOUR

The #H2IQ Hour

Today's Topic: Leveraging Hydrogen and Fuel Cell Tech to Help Coronavirus Relief Efforts

This presentation is part of the monthly H2IQ hour to highlight research and development activities funded by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) within the Office of Energy Efficiency and Renewable Energy (EERE).

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cell Technologies Office Introduction

Vanessa Arjona

H2IQ Hour- Leveraging Hydrogen and Fuel Cell Tech to Help Coronavirus Relief Efforts

May 27, 2020

The Hydrogen and Fuel Cell Technologies Office (HFTO)

U.S. DEPARTMENT OF ENERGY

From R&D to Proven Technologies in Real World - Examples

Innovation

Fuel Cell Catalysts

Catalyst and Supports for PEM Fuel Cells – 3M

Electrolyzers

Proton's Series Electrolyzer System

Giner's PEM Electrolyzer System

Hydrogen Tube Trailers

Hydrogen Tube Trailers – Hexagon Lincoln

Forklifts

Class-1, -2, and -3 Forklifts Powered by Plug Power's GenDrive FCs

Hydrogen Tanks

Quantum Technologies' Optimized 129L Tank

Using R&D and Technology To Make a Difference During COVID-19

Bloom Energy, CA and DE

Refurbished ventilators for use in hospitals.

Doosan Fuel Cells America, CT

 Donated PPE including nitrile gloves, face shields, lab coats and aprons to local healthcare providers

Hexagon, NE

 Donated server capacity to conduct COVID-19 research and respiratory masks to hospitals in Germany.

Source: Fuel Cell and Hydrogen Energy Association

Using R&D and Technology To Make a Difference During COVID-19

Oak Ridge National Lab (ORNL), TN

Used their carbon fiber technology facility to develop input materials to produce N95 masks.

PDC Machines, PA

Donated masks to healthcare providers.

Plug Power, NY

Provided H2 fuel cell forklifts to help transport food at supermarkets and other major retailers.

Power Innovations, UT

Leveraged expertise in technology for military applications to produce ventilator parts and masks.

Source: Fuel Cell and Hydrogen Energy Association

The #H2IQ Hour

Air Co. and NEL

Renewable Hydrogen to Enable Green Chemical Production

Dr. Kathy Ayers, Vice President, Research and Development

Nel Hydrogen company history

Hydrogen From Proton Exchange Membrane Electrolysis

- Originally used for life support (O₂) in closed environments: Optimized for very high reliability
- Commercializing at increasing scale •
- Decreasing cost and improving efficiency through component advancement and scale up

CONVENTIONAL INDUSTRY

Food Glass Industry Industry

Laboratories Chemical Polysilicon Industry

Power

Industry

Thermal processing

Chemical vapor Steel

deposition Industry

Life Support

- Conventional industries represents "traditional" hydrogen markets
- Steady demand for hydrogen

Impact of DOE Funding on Progress

Fundamental R&D to Prototyping

Component modeling

Accelerated embrittlement

Electrode manufacturing

Materials and manufacturing research

Products from kW to MW scale

Nel scale up and commercialization: 1.25 MW stack based on same platform

90 cm²

Almost Impossible

THE WORLD'S FIRST CARBON-NEGATIVE ALCOHOL COMPANY

THE GLOBAL ALCOHOL INDUSTRY IS NOT ENVIRONMENTALLY FRIENDLY.

TO TRANSFORM THE INDUSTRY WITH THE HIGHEST QUALITY MOST SUSTAINABLE PRODUCTS, THAT HELP NOT HURT OUR PLANET.

OUR PROCESS

Air

Powered by local renewable energy sources, carbon dioxide (CO₂) is captured from air or point source.

Water

Water is split into O_2 and H_2 . The H_2 is combined with CO_2 and exposed to our catalysts.

Ethanol

Solar electricity powers the process, creating alcohol.

OUR APPROACH

OUR VODKA

GOLD MEDALS IN TWO INTERNATIONAL SPIRITS COMPETITIONS - BLIND TASTE TESTS

OUR SANITIZER (COVID-19 RESPONSE)

YD YANKO DESIGN

YOUR HAND SANITIZER MAY HAVE 60% ALCOHOL BUT IS IT CARBON NEGATIVE?

BY RUCHI THUKRAL / 03/18/2020

I have never really paid attention to the ingredients of a hand sanitizer before the pandemic which taught me that the Bodyworks glitter ones really won't help and I have to look for ones that have 60% alcohol or above. Obviously, the Als of the worldwide web picked up on my searches and I 'came across' the world's first carbonnegative hand sanitizer made by New York-based startup, Air Co. I am all about sustainable living and a carbon-negative sanitizer was exactly what I needed to replace the glitter.

The pandemic caused an exponential increase in the demand for sanitizers, and in a bid to help health

This carbon-negative hand sanitizer is made from captured CO2

Across the country, many distilleries are switching from making booze to making sanitizer. Air Co.'s carbon-neutral vodka factory is doing the same.

BY ADELE PETERS

When it launched last year, the New York City-based startup Air Co. made the world's first carbon-negative vodka—using captured CO2 instead of yeast to make alcohol. Now, in response to the coronavirus crisis, it's using that same captured CO2 to make hand sanitizer instead.

CO2-based vodka startup Air Co. fully redirects its tech to making hand sanitizer for donation

TE hatoway Darrell Etherington

TechCrunch March 17, 2020

A NYC-based startup that developed technology that extracts carbon dioxide from the air and combines it with water to create vodka has redirected its entire production capacity toward producing hand sanitizer, every bottle of which will be donated through collaboration with NYC officials, and potentially to local restaurants who employ delivery personnel providing critical service as social distancing and isolation measures continue.

Air Co. launched its vodka just last year, using a process it developed (which has received awards from NASA and XPrize) that is actually net carbon-negative. It involves pulling around one pound of carbon dioxide from the air which is then combined with water and turned into pure ethanol using solar-based renewable energy. Ethanol also happens to be the key active ingredient in hand sanitzer, which is generally between 60% and 95% alcohol in its most effective iterations.

Air Co.'s CEO and co-founder Gregory Constantine told me via email that because the company was founded on the basis of fulfilling a mission of social good, the startup wanted to find some way to help with community efforts to counter the ongoing coronavirus pandemic. It naturally turned to producing hand sanitizer made up 70% ethanol, its technology's primary output.

The company isn't looking to cash in on the current (ill-advised) panic-buying trends, which see supplies of hand sanitizer sold out or dwindling across major retailers and Amazon. Instead, even though it's now directing 100% of its production capacity to

CO2-based vodka startup Air Co. fully redirects its tech to making hand sanitizer for donation

A NYC-based startup that developed technology that extracts carbon dioxide from the air and combines it with water to create vodka has redirected its entire production capacity toward producing hand sanitizer, every bottle of which will be donated through

New York City Needs More Hand Sanitizer. This Award-Winning Vodka Startup's Response Is a Remarkable Act of Selflessness and Caring

Why Air Co. has totally shifted its net zero carbon footprint manufacturing process to make and distribute free hand sanitzer for its NYC community.

in f ¥

TY IMAGES

Many entrepreneurs start companies with a larger social or environmental mission in mind.

Like Air Co., the vodka startup co-founded by Gregory Constantine and Stafford Sheehan that instead of using yeast take carbon dioxide produced by nearby factories, combine it with water, and use solar-based renewable energy to create ethanol.

According to Sheehan, the process is "inspired by photosynthesis in nature, where plants breathe in CO2. They take up water, and they use energy in the form of sunlight to make things like sugars and to make other higher-value hydrocarbons, with oxygen as the sole by-product.

AIR CO. SANITIZER

Donated sanitizer for healthcare workers at these and several other organizations:

Mount Sinai Hospital

New York, NY

The Brooklyn Hospital Center

Brooklyn, NY

New York Police Department via Black 6 Project Brooklyn, NY

Cape Cod Hospital Hyannis, MA

Stratford EMS Stratford, CT

Grady Memorial Hospital Atlanta, GA

Portsmouth Naval Hospital Portsmouth, VA

Vassar Brothers Medical Center

Poughkeepsie, NY

C U S T O M COLLABORATIVE

Custom Collaborative Women's Organization New York, NY

CONTACT FOR ADDITIONAL INFORMATION OR PURCHASING

DR. STAFFORD W. SHEEHAN CO-FOUNDER & CTO <u>STAFF@AIRCOMPANY.COM</u>

FOR COMPANY UPDATES: www.instagram.com/aircompany

The #H2IQ Hour

e-Spin Technologies

Nanstructured PEM membrane to PPE products

eSpin Technologies, Inc. 7151 Discovery Drive Chattanooga, TN 37416

May 27, 2020

Corporate Profile

- In Business for past 21 years
- Overall Sales: \$3.1MM (2019)
- # of Employees: 16 + Contract worker on need basis
- Products supplied: Air Filtration products, Wipes, membrane
- Global Customer Profile: US, German, and Japanese automotive plants and Tier 1 suppliers
- Manufacturing Footprint: Chattanooga, TN, USA

Key Technologies

- **Core Competency**: Nanofiber manufacturing
- **Key Processes**: Nanofiber production, nanoparticle integration and coating, thermal processing, lamination, slitting, die cutting, etc.
- Key Products: Air and Vent Filters, Wipes, Battery Separator, membrane (PBI, PVDF, TPU, PES), Face masks

<u>Products being developed under DOE:</u> <u>Ion exchange and BiPolar membrane, Pt. free PEM</u>

The Opportunity

- COVID Pandemic: February 2020
- New customer request for Nanofiber media (Feb)
- Finishing up DOE SBIR Phase I to produce nanofiber membrane

Rapid Development

- Free up 24" wide machine (Early March)
- More demand predicted as COVID spreads
- 3 spinning machine dedicated by end of March
- Running 10 hr shift
- Modification of asset to make face mask
- Rapid prototyping of Pleating process
- Investment decision to purchase sonic bonding machine(s)

- Increase mask production
 - Run 2 shifts
- Increase mask filter media production
 - Run 2 shifts of fiber spinning
 - Add 4th line to spinning
 - Hire/train contract workers
 - Assign shifts to eSpin team
- Safety became key
 - Increased solvent use
 - Solution preparation (@20 liters)
 - Movement of solution to spinning machine

- Non-stop new calls (April)
 - City, Chamber, Local organizations
- More local people walk-in for nanofiber samples
- Develop fabric mask with pocket for Nanofiber
- Develop inserts for mold, thermoform

- Form relationship with Whirlpool to make HEPA filter for powered air purifier respirator (PAPR)
 - Media Pleating
 - Selection of Adhesive
 - Frame development and rapid prototyping
 - NIOSH Test

- Form relationship with Volkswagen to make surgical face masks
 - VW invests in mask machine
 - eSpin to provide 95% efficient masks
 - Production > 60,000 masks/day
 - Apply for NIOSH approval

Growth

- eSpin to increase work force
 - 20+ manufacturing
 - Run spinning machines 24/7
 - Produce 95% efficient face mask media
 - Other corporations
 - Internal use
 - Working with bank to build new spinning machine
 - Expand production capacity

Thank you

The #H2IQ Hour

Giner ELX

Giner COVID-19 Engineering Efforts

H2IQ Webinar May 27th, 2020

Introduction

- Hospitals across the country are facing unprecedented shortages of healthcare supplies needed to combat the novel coronavirus pandemic
- Giner, Inc. and its subsidiaries have stepped up to help meet these critical shortages by teaming with local hospitals
- Giner is fabricating surgical face masks and ventilator parts using equipment funded through DOE

Impact

- There is a global interest in ventilators and PPE as hospital are running low on supply
 - Off-label PPE and ventilator systems serve as bridge devices to help relieve supply shortages required to combat the covid-19 pandemic

Where can Giner help? How fast can we respond? Can we make a difference?

Do you have enough PPE for your shift?

Nurse poll hints at scale of shortage of key face masks, gowns, and respirators

Source: Nursing Times / April 6th, 2020

INERELX

G

Massachusetts Covid-19 Stats

Source: John Hopkins University. May 15th, 2020

*Source: Mass.gov (May 21st, 2020)

Teaming with Mass General Brigham to provide rapid solutions

- Teams organized through Mass General Brigham
 - Mass General Brigham's Center for Covid Innovation is using their network to mobilize engineering teams; bringing people/resources together
 - 7 teams overall including the MIT Emergency Ventilator (E-Vent) team
 - Giner has been helping by making parts for these teams
 - □ Website: <u>https://covidinnovation.partners.org/</u>
- Giner utilizing equipment funded through DOE programs
 - □ Equipment: Laser cutters and 3D printers
 - Equipment originally used to fabricate hydrogen generator and sensor components, are being used to manufacture
 - Surgical face masks
 - Ventilator parts

Fabricating Ventilator Parts

- Giner is using 3D printer to print parts for Ventilator Groups
- 3D Printer purchased under DOE funded program: Portable Sensor for Detection of Micro-Organisms in Groundwater (contract #DE-SC0011307). Equipment originally used to fabricate
 - Components for field-deployable microbial monitoring systems
 - Prototype cell-frames;
 components used in PEM-based
 electrolyzers and fuel cell stacks

GINERELX

Fabricating Face Shields

- Giner is using laser cutters to fabricate complete parts for the Face Shield Groups
- Fabrication and assembling at Giner
 - Mfg. Capability: 120+ per day / 840+ per week
- Masks are donated to Harbor Health and Boston Health Care for the Homeless
- Laser cutter is cost-shared equipment on government contract
- Face shield is a NIH approved design: https://3dprint.nih.gov/discover/3dpx-013456

Face Shields fabricated and assembled at Giner Labs

Future Activities

Giner is gearing up for a back-to-work phase in, but we will continue our efforts in fabricating PPE and ventilator parts until the demand subsides

The administration continues to work to acquire personal protective equipment (PPE) to support frontline workers

Coronavirus in Massachusetts: Governor Baker provides update on COVID-19 testing capacity and strategy, PPE procurement

Source : https://www.wwlp.com/news - May 15, 2020

GINERELX

Giner ELX Inc. 89 Rumford Ave, Newton, Ma. 02466

Monjid Hamdan VP of Engineering mhamdan@GinerELX.com

QUESTIONS?

The #H2IQ Hour

Stanford University

When Electrolysis meets COVID-19

Presenters: Fritz Prinz, John Xu Contributors: Allison Okamura, Ming Luo, Josey Oquendo Stanford University

Sanitized Air

Filtered Air

+ Freshly Made Oxygen

The N95 mask model may suggest a need for both filtered air and a supplementary oxygen supply

$$S_{O_2} = (F+f)\Delta p_{O_2}/p_0$$

Lack of Convective Mass Transport $\Delta p/p_0 \sim 4\%$

Concentration change in the breathing environment

Respiratory Behavior Change

	At Treadmill Speed 1.7 miles/h		
	Control*	FFR With Valve	FFR Without Valve
FFR Dead-Space Gases			
O ₂ (%)	NA	17.4 ± 0.6	17.3 ± 0.4
CO ₂ (%)	NA	3.0 ± 0.3	3.1 ± 0.2
$S_{pO_2}(\%)$	98.5 ± 0.8	98.3 ± 0.7	98.3 ± 0.8
P _{tcCO2} (mm Hg)	40.7 ± 3.5	41.9 ± 3.7	40.3 ± 4.2
f (breaths/min)	27.7 ± 7.1	24.7 ± 6.6	23.8 ± 4.8
$V_{T}(mL)$	793 ± 215	967 ± 328	972 ± 321
V _E (L/min)	20.9 ± 8.2	22.8 ± 5.6	22.2 ± 4.5
Heart rate (beats/min)	92.3 ± 8.2	96.6 ± 10.6	97.9 ± 8.3

 Table 4.
 Physiological Variables After 15 Min of Filtering Facepiece Respirator

RJ Roberge et al., Respiratory Care, 2010, 55 (5), p569

Calls for a better N95 mask

 Healthcare professionals (frontline doctors and nurses) Patients with respiratory and blood-oxygen related diseases

I am a physician COVID survivor that will be starting to see COVID patients again Tuesday after more than a month out and in the hospital fighting my own COVID infection (caught caring for COVID patients)

Word cloud generated by requests/questions on the "reengineered" mask

Calls for a better N95 mask

Word cloud generated by requests/questions on the "reengineered" mask

Dr. Shicheng (John) Xu Prof. Fritz Prinz

A Wearable Conditioner

charmlab

Prof. Allison Okamura

Work Scopes

Respiratory responses to the gas levels in the breathing environment Stanford

Oxygen generator/CO₂ remover that fits into the form factor Stanford ENGINEERING

Electrochemical oxygen production

Electrolyzer + Fuel Cell

Electrolyzer: $2H_2O --> 2H_2 + O_2$ Fuel Cell: $2H_2 + O_2 --> 2H_2O$

Direct oxygen enrichment

Cathode: $O_2 + 4H^+ + 4e^- -> 2H_2O$ Pt/Co Anode: $2H_2O -> O_2 + 4H^+ + 4e^-$ Ir O_2 (25 °C) 1.1 V | 0.3 A/cm² | 1 sccm O_2/cm^2

Capacity estimate

N95 conditioner: 100-200 sccm -- 30-60 W/unit Medical grade oxygen generator: 2-4 slpm 0.6-1.5 kW/unit Total capacity can mount to GW/year

More research directing towards

- Active OER/ORR catalysts
- Small form factor stacks
- Potentially a direct electrochemical disinfection process

The #H2IQ Hour Q&A

Please type your questions into the **Q&A Box**

All (0)

∨ Q&A

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately...

Х

The #H2IQ Hour

Thank you for your participation!

Learn more:

energy.gov/fuelcells hydrogen.energy.gov