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Pro2R Project Summary

Objective: Integrate probabilistic short- (2-3 hr ahead) and mid-term (day-ahead) solar 
power forecasts into operations of CAISO & MISO

Thrust 2: Integrate probabilistic forecasts 
in ISO operations for ramp product &
regulation requirements

Thrust 3: Provide situational awareness 
via visualizations of probabilistic ramp 
forecasts & alerts

Approach:

Thrust 1: Advanced big data-driven
“probabilistic” solar power forecasting 
technology using IBM Watt-Sun & PAIRS 
(Big data information processing and 
machine learning approaches to blend 
outputs from multiple models).

Introduction
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Thrust 1: SFII Built Upon IBM PAIRS Geoscope Platform

• Distributed computational system
• Scales to many hundreds of Petabytes (PB)
• Data processing rate at PB/day.

Thrust 1

NAM HRRR-Subhour GOES-R

spatial resolution 12 km 3 km 500 m

temporal resolution 1 hr 15 min 5~10 min

daily data volume 9.4 GB 86 GB 203 GB
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Question: What is the error of the 
models, when, where, under what 
weather situation?

NAM GHI Forecast Error (Surfrad BND)
– Strongly depends on zenith angle and forecast 

irradiance.  The two parameters create 4 
categories  of situations:

Hurricane Ike path forecasts from 
8 different weather models*

Situation-Dependent Model Blending 
for Solar Forecasting

Thrust 1
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Utilization of GOES-R Satellites –
In progress– Expected in Watt-Sun 2.0, 2019-20 Q7
• Blue band, 0.47 μm: monitor dust, haze, smoke and clouds
• Red band, 0.6 μm: detect fog, estimate solar insolation, depict diurnal aspects of clouds
• Near-infrared, 0.86 μm: detect daytime clouds, fog, and aerosols; calculate normalized difference vegetation index
• Infrared, 10.3 μm: correct atmospheric moisture, estimate cloud particle size, characterize surface properties

Plan:
• Translate GOES imagery 

to Solar Irradiance raster 
map

• Use Deep Learning 
combined with Optic 
Flow to forecast cloud 
movement, then 
translate into forecast 
solar irradiance map.

Thrust 1
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Used quantile regression to deploy probabilistic forecast models

• Quantiles of solar as function of independent variables
• Example results for 2 hr-ahead forecasts

• Distributions are asymmetric  need quantile regression techniques
• Adjacent days have different distributions; but present CAISO flexiramp requirements are very stable day-to-day 

because they don’t reflect weather forecasts  need to integrate probabilistic forecasts in requirements

Thrust 1
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P-P plot-based Error Metric
• A P–P plot (probability–probability plot) assesses how closely two data sets agree
• By plotting the two cumulative distribution functions against each other

P-P plot (2 hr forecast)
Mean absolute difference:  0.0543

Example Empirical CDF Curves (2 hr forecast)

CD
F

Rank
GHI

CD
F

Thrust 1
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P-P plot 2 Hr Ahead Error Metric: 
Comparison with Bias Corrected HRRR

Empirical CDF
Mean absolute difference:  0.054

Bias Corrected HRRR (normal distribution)

Mean absolute difference:  0.086

CD
F

Rank Rank
Thrust 1
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• P-P Plot score and MAPE comparison (normalized by max GHI; daylight hours only)
• Watt-Sun 1.0 outperforms HRRR Bias Corrected in all sites in terms of MAPE, in most 

sites in terms of P-P Plot score

Thrust 1: Forecast Error Report -- CAISO

Thrust 1

11



• P-P Plot score and MAPE comparison (normalized by max GHI, daylight hours only)
• Watt-Sun 1.0 outperforms HRRR Bias Corrected in all sites in terms of MAPE, in 

most sites in terms of P-P Plot score

Thrust 1: Forecast Error Report -- MISO

Thrust 1
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Baseline approach CAISO bases FRP requirements on confidence 
intervals for net load uncertainty by analyzing a rolling window of 
last 20-40 days for the same hour
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Thrust 2

Thrust 2: Integration of probabilistic forecasts into ISO 
operations: Flexible Ramping Product
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Baseline method for FRU uncertainty component potentially 
leads to under-procurement & price spikes
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Estimates of FRP uncertainty 
component do not necessarily 
correspond to the target 
confidence interval
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Thrust 2
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I. Aggregation
II. Net load (NL)
III. NL forecast error
IV. FRP Requirements

NL forecast 
error (RTD)

Net load
(Binding RTD)

Net load
(Advisory RTD)

Convolution

Convolution

Site-level probabilistic solar 
power

(Advisory RTD)

System-level probabilistic 
solar power

(Advisory RTD)

Site-level probabilistic solar 
irradiance

(Advisory RTD)
PVlib Convolution

System-level probabilistic 
load, wind power (Advisory 

RTD)

Site-level probabilistic solar 
power

(Binding RTD)

Site-level probabilistic solar 
irradiance

(Binding RTD)
PVlib Convolution

System-level probabilistic 
load, wind power (Binding 

RTD)

System-level probabilistic 
load, wind power (Binding 
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FRP in RTD

Thrust 2

Probabilistic net load forecast-based ramping product 15
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Value of probabilistic forecast-based FRP procurement

Compare baseline to 
probabilistic requirements

Probabilistic 𝐹𝐹𝐹𝐹𝐹𝐹
≈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹

Probabilistic 𝐹𝐹𝐹𝐹𝐹𝐹
> 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹

Actual RTD flex need
≤ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹

Actual RTD flexibility need
> 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹

Probabilistic 𝐹𝐹𝐹𝐹𝐹𝐹
< 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹

Actual RTD flex need
> 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹

Actual RTD flex need
≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹𝐹𝐹

Production cost ≈ Increase Decrease
Power balance 
violations 
(scarcity events)

≈ Decrease Increase

a b c d e

F: Frequency

Fa

Fb Fc Fd Fe

Compare 
requirements

Actual need 
(realization)

Performance of 
prob. forecasts

Thrust 2

Under procurement 
(Risky)

Over procurement
(Conservative)

16



This presentation may have proprietary information and is protected from public release.

Daily profile Baseline
Extreme ramps 

realized?
(Prob Req -Baseline 

Req) / (Baseline Req)
19th May: (b) 
intervals Risky Occurred (11%) +40%

6th May: (c) 
intervals Risky Did not occur 

(42%) +79%

12th May: (e) 
intervals Conservative Did not occur 

(44%) -13%

Market simulations: Probabilistic vs. Baseline

Test system: Modified 118 bus IEEE Reliability Test System, mimicking CAISO gen mix (1/10th 
CAISO system)

Thrust 2.2

Reliability 
(# Gen. 
scarcity) 

Productio
n cost

Uncertainty-
induced 
costs

Decrease
(2713)

Greater
(+$2,601) Lower (-60%)

Same
(5 5)

Greater
(+$920) Higher (+5%)

Same
(0  0)

Lower
(-$497) Lower (-19%)

• When baseline is riskier we expect reliability benefits when high ramps realized
• When baseline is conservative we expect production cost reductions when ramps not realized
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The Ramp Visualization for Situational Awareness 
(RaViS) tool provides situational awareness and 
visualization capabilities using probabilistic solar 
and net-load time series. 

Features:
• Integrates IBM forecast data
• Refresh rate of 60 seconds
• User interface: Single page web application and 

open source
• Shows site specific metadata via hover
• Highly flexible, easily configurable

Future work:
• Net-load ramps
• Adaptable to other kinds of events: outage/trip, 

cyber threatsEvent Outlook

Geolocation All-regions 

Geolocation 
Region Detail

Forecast Detail

Thrust 3: RaViS - Visualization tool

Thrust 3
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Pro2R: What’s Ahead

• Thrust 1: Probabilistic Watt-Sun Versions 2.0 & 3.0: integrates 
GEOS-R, multi-expert machine learning, & blended models

• Thrust 2:
• Statistical/ML modeling of relationship of probabilistic solar forecasts 

to net load uncertainty on regulation & FRP timescales
• Simulation-based testing on ISO-scale systems of improved 

requirements: cost & reliability
• Interaction with CAISO & MISO on data, method value, simulations, & 

implementation pathways
• Thrust 3: RaVIS development, including integrating latest Watt-Sun 

methods, net load data, market information, and ISO feedback
Conclusion
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Wrap-Up: Pro2R Impact

• Identified the major methodological issues in integrating 
probabilistic forecasts into system products
• BP2 will address those issues and possible improvements in forecasting and 

industry practice (e.g., product definition, timeline) 
• Expected outcome: a blueprint for research in forecasting and industry practice

• Project results expected to highly influence industry practice 
• ISO staff confirmed that they are evaluating potential improvements to their 

existing requirements approach
• Integrating probabilistic forecasts is the most promising way to address needs 

for requirements to reflect up-to-date weather forecasts

20
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Percentage of time when reduction is over 10% 
FRU FRD

May 27, 2019 38% 25%
May 28, 2019 42% 50%
May 29, 2019 46% 50%
May 30, 2019 58% 38%
May 31, 2019 42% 46%

• RTPD
• Requirements are increased occasionally due to greater 

uncertainties of NL forecast errors
• 25%-58% of hours see >10% reductions in FRU and FRD 

requirements

Thrust 2.1: Requirements for ramping product
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