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Project Motivation: Using Advanced Methods for
Operating Systems With Uncertainty
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Stochastic UC Interval UC Robust UC Dynamic Reserves
Uncertainty Model Scenarios Inter-temporal rates Uncertainty range Requirements
L : Minimize cost to meet : : Minimize ratin
Objective min E{cost} min{max{min f}} operating
central forecast cost to meet forecast
: Depends on the . . :
Security P . Inter-temporal ranges | Uncertainty Budget Confidence interval
scenarios
Scalability Low High Variable (high) High

Can we use other methods to deal with uncertainty/variability?
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Project Reminder- Three Worksireams

FORECAST .

= A Forecasting Work Stream to develop and e
deliver probabilistic forecasts with targeted "
improvements for utility scale and behind-
the-meter (BTM) solar 2 Lmir

Operational
demonstration
and impact
e assessment WS2: Simulate

A\ / %
DEMONSTRATE , / DESIGN .

= A Design Work Stream to identify advanced
methods for managing uncertainty based on
results from advanced scheduling tools

@ AWS TRUEPOWER -~ DUKE

= A Demonstration Work Stream to develop € ENERGY
and demonstrate a scheduling management \'7 4 SOUTHERN &2
platform (SMP) to integrate probabilistic COMPANY
forecasts and scheduling decisions in a P *T0Te Lamaer
modular and customizable manner POLARIS
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Current Status

Generally on track, with some contracting/NDA delays FORECAST' @ aws TruEPOWER
WS];’Deve‘!{op
e V7

WS1: Forecasts starting to be delivered and-will be sy
improved upon in BP2; scenario generation fTrther S ) =

than original planned EVALUATE POLARIS

Operational

demonstration ..
and impact Pl -d[“\ DUKE

DEMONSTRATE .

WS2: Model |mproved up for Hawaii, close for (453: S O\ /W5§: it S’ ENERGY.
utheast utilities (final tweaks and data); m thods for .. \;L‘;f:,;"gjﬁgm‘;’ o A

reserves "determined, stochastic UC to come " decisions management 2

methods
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- g ,,?! L ; _ .'. Hawaiian
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capabilities for side by side comparison and deC|S|on
support/visualization tools _
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SETTING UP PROBABILISTIC FORECASTS
FOR UTILITIES

Daniel Kirk-Davidoff, Jiaxin Black, Paulino Tardaguila, UL LLC



FORECAST SYSTEM SETUP

NextGen Monitor

Forecasts Historical Portfolio Logs

NextGen Path

/mnt/tegile/ops/python-forecast- -
training

Forecast Type
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Client
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Models
v fv3 .
@ icon NextGen Monitor

) ecmwf-api

NextGen Path Forecasts Historical Portfolio Logs
) emcm

Imnt/tegile/ops/python-forecast- -

) gefsm
training

) Clear Sky generation
Forecast Type

Statistical Method Show | 10 © wnd ® sol O spd O ird
Client
[ DUKE hd l

Error: cannot open the connection
() Clear Sky generation
Error: No active methods for this

client-type
Forecast Interval

leo vl

M, | Leaflet | Map data: © OpenStreetMap, SRTM | Map style: © OpenTopoMap (CC-BY-SA)

( ) Show 10 v |entries search: [
UL is setting up operational probabilistic forecast for Duke Energy, HECO and the
Southern company. To date, our methodology for these forecast has been a simple
application of quantile regression tuned from the historical timeseries of our final

Site

ensemble-derived single-valued forecasts.

@ UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential.



WHERE DOES THE PROBABILISTIC INFORMATION COME FROM?

Satellite

Probabilistic forecasting in essence is about reviewing Glopal < Imagery-
: Y . Regional
a history of forecasts, and finding out how reality NWP Based
Forecasts

turned out for a set of partitions of the forecast value.
The interesting part is, how do you partition the past

forecasts?

Quantile regression: forecast partitioned by their Forecast Methods
magnitude

Analog ensemble: forecast partitioned by their Optimized
trajectory in time Ensemble Algorithm

Machine learning: forecast partitioned by a sort of

cluster analysis Solar
Power

Forecast

@ UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential.



PROBABILISTIC FORECASTING USING MACHINE LEARNING

SHAP diagrams allows us to inspect the
dependencies that Machine Learning
algorithms derive from predictors to
predictands.

By contrast with wind generation
forecasting, the list of NWP variables that
have a big impact on a machine-learning
post-processed forecast of solar
generation is intuitively reasonable.

In our first round of forecasts we are
combining multiple variables from several
NWP models in a single Machine Learning
process

@ UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential.
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PROBABILISTIC FORECASTING USING MACHINE LEARNING

A lot of the heritage of machine learning techniques involves categorical prediction (is the
image more likely of a cat or a dog)? This means that many of the popular techniques are
well-suited to probabilistic forecasts.
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SAMPLE SOLAR FORECASTS USING XGBOOST

31-CMP-probabilistic-2019092100-sol-BHC-60

— 10%
— 20%

— 30% — 50% — 70% — 90%
— 40% — 060% — 80%

T
09-21 00

@ UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential.

T
09-21 06

T
09-21 12

T T T T T T
09-21 18 09-22 00 09-22 06 09-22 12 09-22 18 09-23 00

12



FORECAST IMPROVEMENT STRATEGY

« We plan a series of experiments with machine-learning based methods to determine:
* Optimal number of NWP model variables to incorporate
« Best use of post-processing to normalize probabilities against observed errors
« Relative merit of
 including inputs from multiple NWP models in a single machine-learning algorithm
« generating multiple probabilistic forecasts from multiple models
« generating probabilistic forecast from tuned individual NWP-based deterministic models

« Best strategy to blend short-term (< 3 hours leadtime) data-based forecasts with longer term NWP-
based forecasts

@ UL and the UL logo are trademarks of UL LLC © 2018. Proprietary & Confidential
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Using Probabilistic Forecasts for Operating Reserve
Determination
Lead: Miguel Orfega-Vazquez
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Central Reserve Needs

95 1 Risk Tolerance :
1
90 - \I,
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| |
|
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Dynamic Reserve Requirement Method
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Incorporation of Probabilistic Forecasts

MW

1200
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100 |

100%
95%

System operators rely on point forecasts to
draw the operating plans of their system

Probabilistic forecasts provide abundant
information on uncertainty

Explore different methods to process the
probabilistic information

Adapt the reserve determination method to
each of the proposed methods

Two approaches are proposed for reserves:

1. Incorporate probabilistic information via scenarios

time, h

WwWw.epri.com

2. Incorporate probabilistic information via desired
confidence interval of forecasted PDF
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1) Scenario Creation

= Create Scenarios via random multivariate

trials
. . . 1200
= Trials’ characteristics: I R ——
C Scenario
— Follow the probability distributions of the 1000 |
forecasts at each period 900 |

— Intertemporal correlation and correlation decay 50 ¢

between samples

700 [

600 [

2 ;
500 _
= Method: 400 |
300 f
— Creation of standard normal multivariate trials 200
— Induce temporal correlation and correlation 100 |
decay of
— Convert to uniformly distributed trials time, h

— Map to forecast distributions

- - : : : ELECTRIC POWER
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1) PF via Scenarios

= Sample data:

1200 1200
1100 | 1100
1000 | 1000 |
900 [ 900 |
800 [ 800
700 | 700 |
> 600 _ % 600
= 500 | 500 F
400 | 400 ©
300 | 300 ©
200 | 200 |
100 | 100 |
0: sl ) - -l — ]
7 20 24
Probabilistic forecast from UL
11 probability bins
19 WwWw.epri.com

_ Cenral forecast (cf)

Scenario

0 4 8 12 16 20 24

time, h

100 probabilistic scenarios: p = 0.80; w = 0.08

The color intensity is proportional to the probability
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1) PF via Scenarios (weak intertemporal correlation)

= Sample data:
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1100 1100 —. . Cenral forecast (cf)
- . Scenario
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900 900
800 800 |
700 700 |
= 600 _ % 600 _
= 500 f 500 |
400 400 _
300 300 _
200 200
100 100
0 L 0 )
20 24
time, h
Probabilistic forecast from UL. 100 probabilistic scenarios: p = 0.08; @ =0.08
11 probability bins The color intensity is proportional to the probability

ELECTRIC POWER
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1) Integration into Operating Reserve Calculator
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2) PF for a desired Ci

= Reserve requirements for a given time period:
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11 probability bins
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2) PF via CI of the PDF

= Sample data:
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2) PF via CI of the PDF

= Sample data:
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2) PF via CI of the PDF

= Sample data:
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2) Integration into Operating Reserve Calculator

— Override
Reserve requirements requirements
> | for solar from
. / | reserve tool
— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —_“A’,_ \
g ( — - N
. o 5 f N
| Zinnin iy Reserves |
| S |
: All variables = | S :
i i * Production:
I (Le., load, solar i R I
. 1 7z 5 : Categorize k )
I Wlnd) e.h L = type and source I
| |
| |
| |
\ /
N s
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Next Steps for Reserve Requirements

Finalize integration of probabilistic forecast methods into the reserve determination tool

Coordination with UL to generate larger sets of data for testing
— System being explored: RTS-GMLC”

Produce results on test system

Qualitative analysis of the results

Assessment using a production cost tool

Move to larger case study systems (Hawaii first, then Southern and Duke)
Compare to explicit representation of probability in UC/ED (BP3)

* https://github.com/GridMod/RTS-GMLC

WwWw.epri.com © 2019 Electric Power Research Institute, Inc. All rights reserved. EPE' ;‘E‘sﬂ'}{&"ﬁ,"‘;ﬁﬁuﬁ
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Lead: Nikita Singhal, Robin Hytowifz, Qin Wang
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Utility Demonstrations

o

)

Duke Energy
- Focus on Duke Carolinas footprint
- 2 GW installed, > 6 GW in queue

L

- Demonstrate in parallel with ops
Sensors for distributed solar forecasts

Southern Company
- Over 1500 MW solar in 2017
- Focus on future cases
- Large interconnected system

.ff~. DUKE ’
= ° ENERGY.

I \
A

—
~ -‘
Southern
Company

Hawaiian Electric

Q :
- Focus on Oahu - 600 MW solar installed
© o = - Island system
pA Fo / - Leverage existing EPRI modeling on
- C oo Hawaan reserve determination
WWW. e p 11.COIn & £LULlIT LIELL L rUwEl nNesedilll i ILuLE, e, AILTIEHILWL 1E>T1VEU. EPEI ;;ESCEL':ngloN\g$FrUTE
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PCM Software Abilities: FESTIV

UnE ststus and unk skart-
up for all units wih start

tme > tarcamat

[

Unit sEatus, stan- =
up, and dispatch Petage
unks

for all

| — — resere schedules o al

Dispatch schedules and /

H

] === - -

T

AGC schedule, eallred

per=ration for all wnils, -
prodaction cost, and ACE

e — = =

WwWw.epri.com

| ——=>

I Data Flow

I 3
Process Flow

I
|
I
[
——— e — — — = —

el —— = =

AGC = min{current+ RR, max{current — RR, BP

t+2 seconds

Assist
If |ACE| > 40

units ramp to oppose ACE

no

i yes
t%10==0

T T

If |ACE| > 40 If ACE > 10
Err!g ramp rate and all <~ Curtail VER in specific +—
:2:5 ramp to oppose order to reduce ACE

© 2019 Electric Power Research Institute, Inc. All rights reserved.

Normal

Perform Equal Lambda process. Base
Point set to equal lambda value

|

Permissive

ACE < -5: units with dec. Base Ppoint
remain constant

<+— Emgergency ramp rate and all <+—

ACE > 5: units with inc. Base Point
remain constant

Base Point set to equal lambda —
ACE*RegPartFactor

ACE < -5: units with dec. Base Point
remain constant

ACE > 5: units with inc. Base Point
remain constant

- Equal Lambda -
Simplified Description

Step 1: Choose starting lambda

Step 2: For all AGC units
P=(lambda-b)/2a

Units below pmin or above pmax
are fixed to those values

Step 3: Is Sum(P) minus current
net load below stopping criterion
(currently 1 MW), or is iteration
count exceeded (currently 10)? If
yes, go to Step 5. If no, go to Step
4,

Step 4: Set new lambda based on
detailed algorithm. Go to Step 2
to repeat.

Step 5: If Max iteration hit and
lambda is less than the minimum
thermal unit inc. cost, begin to
curtail VER in specific order

Step 6: Set BP equal to last
determined schedules

ELECTRIC POWER
RESEARCH INSTITUTE
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HECO: Model Development

= FESTIV model enhancements (i.e., functional and formulation modifications) for
HECO utilization in operations to enhance modeling accuracy (assists in obtaining
realistic cost estimates)

— Incorporation of logic around variable startup types (hot, warm, and cold)

— Incorporation of staffing constraints and staff shift time constraints that impact resource
schedules and operation

— Incorporation of must-run requirements, daily minimum run time requirements, and planned
resource outage schedules

= Preliminary results (1-week): Increase in system operating costs with added
modifications/restrictions on resource operation and schedules (benchmark: 10%)
= Current status:
— Validating the model and results on multiple weeks of data to ensure accuracy

— Dynamic reserve requirement determination, using: 1) deterministic, and 2) probabilistic
forecasts

— Integration of dynamic reserve requirements within FESTIV

. w .'v . Hawallan
™ Electric

. el g ey g 8 | ELECTRIC POWER
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Duke Energy: System Data

= Duke system characteristics (DEC and DEP)
— Conventional generation (steam, coal, CC, CTs): approx. 33 GW
— Hydro: 1445 MW
— Pumped Storage Hydro: 2140 MW
— VER*: approx. 2 GW

= Data collected (new forecast and actual data)

-~ DUKE
==° ENERGY.

Load Solar Hydro**
Week-ahead v (Jan17- pending \ Fixed to
(hourly) May19) actual
Day-ahead V (Jan17- pending \ (Jan17-
actual (hourly) May19) May19)

* Dependent on the case study scenario — current system shown here
** Hydro schedule deemed as known for scheduling and dispatch purposes.

32 www.epri.com © 2019 Electric Power Researc h Institute, Inc. All rights reserve d. EPEI ;;iimgﬂpf&:ﬁuﬁ
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Southern Company: System Data somen

= Summary of Data
— 287 generators (54 GW capacity)

— 10-minute time-series data for
Demand, Hydro (including
pumped-storage) generation,
solar and wind generation

= Test Scenarios
- Low: ~1.5 GW PV capacity
— Medium: ~ 6 GW PV capacity
— High : ~10 GW PV capacity

_ Previously used for EPRI Maximum 3hr Net Load Ramp at different

R i solar levels
flexibility analysis work,
Solar Capacity  |1.3GW__ |56W _ [10GW _ |20GW
EXtended here to dO fu” Max 3hr NL Ramp (MW) 6,515 8,122 11,278 18,131
simulation Max 1hr NL Ramp (MW) 3,407 4,442 8,203 16,090

WwWw.epri.com © 2019 Electric Power Research Institute, Inc. All rights reserve
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Utility Operations: PSO Software Abilities P

Inputs*: Fuel prices, /Releose reserve\
offers, resource mix, TX held in prior
topology, resource Offer cycle to
characteristics, efc. updates manage
\_ imbalances )
|
Week-ahead Actual
to day-ahead* > operations
(hourly SCUC) (hourly SCUC)
Outputs: Gen. and
reserve schedule, flows,
curtailments, prices,
- - Forecast costs, revenues, reserve
RIECCSIS: shortages, load shed,
Demand, VER Upelgiies < etc.

*SCUC is run at 7AM on the current operating day due to less stressed conditions from midnight — 7am (ISOs/RTOs typically
run their DAM at 11AM on the previous operating day or midnight), and run to end of 7 days out

WwWw.epri.com

“, Z > ectric Fower nesearcn institute, Inc. /‘\ rignts reserved.
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Cluster 1

Cluster 2
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Utility Operations: Scheduling Process

Cycle 1 (Weekly)

All units can be
committed

Run 7 days with
forecast outlooks

Cycle 2 (24 hour)

All units can be
committed

Rolling Horizon

Cycle 1 (Weekly)

Cycle 2 (24 hour)

Forecast CD

l

Forecast 1D

l

Jan. 5

Forecast 2D Forecast 3D  Forecast 4D

l l l

Jan. 6 Jan. 7 Jan. 8

Forecast 5D

l

Jan. 9

Forecast 6D

Jan. 10

Actuals
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Actuals

Forecast 1D Forecast 2D  Forecast 3D

l l l
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Forecast 4D
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Jan. 9

Forecast 5D

Jan. 10
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Next Steps: Case Studies

= Finalize data and models (BP1)

= Benchmark systems against utility studies/operations (BP1)
— Production costs within agreeable level
— Generation by type, reserve requirements, etc.
— Cycles represent reality closely enough to be insightful

= Add probabilistic forecasts (BP2)

— Dynamic reserves (deterministic and probabilistic)
— Stochastic UC

= Visualization tools/scheduling management platform (BP2/3)

WwWw.epri.com © 2019 Electric Power Research Institute, Inc. All rights reserved.
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Methods to Respond to Variability and Uncertainty...

*Use of multi-cycle production cost
simulation

*Demonstration of use of these tools to
show benefits of advanced reserve and
scheduling

*Benefits of dynamic vs. static reserve

*Stochastic UC can be feasible on large-
scale systems

Introduction of 3 needs for reserve and
how these can be calculated

Reserve through explicit reserve
requirements vs implicit advanced
scheduling

Comparison of needs and implicit vs
explicit reserve scheduling

Impact of scheduling formulation on
reserve adequacy

Scale comparison of advanced scheduling
and dynamic reserve on large-scale
practical system

Understanding of additional practical
challenges of advanced scheduling and
dynamic reserve

Understanding of advanced scheduling and
dynamic reserve on different scheduling
processes

*Translate three reserve needs to
implementable reserve requirements

«Start to finish dynamic reserve
requirement proposal for use in BAs

*Study comparison of benefits of dynamic

reserve and EPRI reserve proposal

« Additional studies complete on Hawaiian Electric
Company

*Software tool that includes method for

calculation

Enhanced method to determine dynamic
reserve requirements using ANN

Comparison of the ANN method against
original approach

eAdditional studies complete on a utility member
Software tool that includes ANN method
for calculation

Work in progress ...

Mitigation of potential imbalances due to variability and uncertainty, and

enhance operating efficiency

38
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DynADOR Tool

Dynamic Assessment and Determination of Operating

Reserve (DynADOR)

Application of EPRI’s research methods by
development of software tool to determine “smart”

reserve requirements

Can be used in operations or in studies:

— Day-ahead, month-ahead, real-time, input into long-term

renewable integration study

Applicable to different balancing areas types:

— ISO/RTO, utility BA, International TSO, isolated system vs. large

area

Validation of results by means of detailed simulation

studies

WwWw.epri.com
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|4 Dynamic Assessment and Determination of Operating Reserve — x
DynADOR - v2.1
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Processes: DA RT

Add or modify recerve type,/product

Data entered (all procesees):

Recerve type/product: DAIRT w .
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Bin: EPRI clustering method v .
Assecs reserve dependencies | .

Determine reserve requirements |
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1) PF via Scenarios (different day)

= Different days:

MW

40
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1100 _ — o . Cenral forecast (cf)

Scenario

1000 [
900
800
700

600 |

MW

500 |

400 |

300 |
200 [

100 |

Probabilistic forecast from UL.

11 probability bins
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1) Scenario Reduction

= Populated sets of scenarios guarantees complying with desired statistical properties
Computationally intensive for tools that optimize over the complete set
Reduce to a set with a desired cardinality using ~~-means

Grouping scenarios: 1) adding their probabilities, and 2) probability-weighed averages
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time, h
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Dynamic Reserve Requirement Methods

42

( Y 4 )
Historical Assessment Assemble using
Reserve R W = tenston best ex_planatory
Characteristics Historical assessment to varale: variables
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Alternative Methods to Determine Reserve Requirements
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1) Intertemporal Correlation

time, h

time, h

time, h

time, h
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