

Max Tech Efficiency Electric HPWH with low-GWP Halogenated Refrigerant (A.O. Smith)

Project Summary

Timeline:

Start date: October 2018

Planned end date: October 2021

Key Milestones

- Feasibility analysis of HFO refrigerants to replace R-134a (May 2019)
- 2. Development of next generation HPWH with improved UEF and FHR (October 2020)

Budget:

Total Project \$ to Date:

DOE: \$1592K

Cost Share: \$200K

Total Project \$:

DOE: \$1592K

Cost Share: \$300K

Key Partners:

Project Outcome:

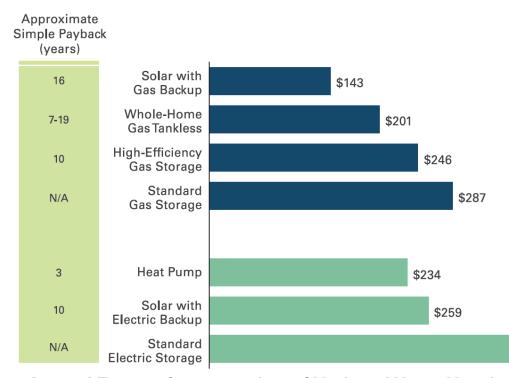
The project is focused on two major aspect for the development of next generation heat pump water heating technology.

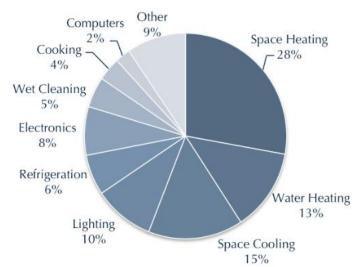

- Deployment and performance optimization for hydrofluoroolefins as alternate refrigerants to substitute conventional working fluids (R134a).
- Design and optimization of individual components and overall system to maximize the performance (Unified Energy Factor- UEF and First Hour Rating-FHR)

Project Team

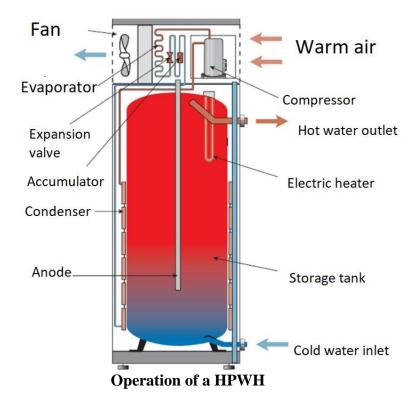
Oak Ridge National Laboratory

- Kashif Nawaz (R&D staff)
- Bo Shen (R&D staff)
- Ahmed Elatar(Post-Doc associate)
- Van Baxter (R&D staff)
- Jeff Munk (R&D staff)
- Tony Gehl (R&D staff)
- A. O. Smith Corp.
 - Steve Memory (Research Director)
 - Jiammin Yin (Senior Engineer)
- University of Illinois (James Carpenter)
- Texas A&M, Kingsville (Joseph Randall)
- University of Tennessee (Alic Brigham)





Water heating accounts for about 10% of all residential and commercial site energy use in the United States.


Residential end-use energy by different applications (US EIA, 2013)

\$519

Annual Energy Consumption of Various Water Heating Technologies.

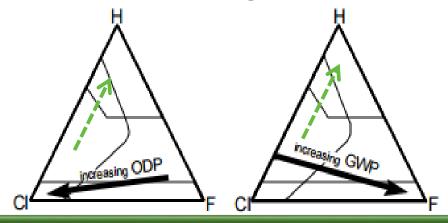
Energy Star Water Heater Market Profile, D&R International, 2010

- HPWH technology has been validated and proven to be successful through lab and field experiments.
- While the technology is mature, there are obvious opportunities to further enhance the performance of the systems.
- Hybrid configuration assist to meet the demand when HP can not provide sufficient heating.
- The overall system performance depends on several factors including
 - Tank thermal stratification
 - Condenser design
 - Compressor
 - Working fluid

The **First Hour Rating (FHR)** is a measure of the available hot water capacity of the water heater (in gallons).

Unified Energy Factor(UEF)
$$= \sum_{k=1}^{n} \frac{M_k c_p(T_s - T_i)}{W_i}$$

FHR greater or equal to (gals)	FHR less than (gals)	Draw pattern for 24-hr UEF
0	20	Point of use
20	55	Low usage
55	80	Medium usage
80	Max	High usage


- Major limitations of current state-of-the-art systems are an average UEF of 2.8 and a FHR (system capacity) of 48 gallons.
- Most of the existing technology is based on R134a (higher GWP)

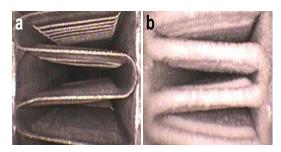
Draw number	Time during test (hh:mm)	Volume (gals/L)	Flow rate (GPM/LPM)
1	00:00	15.0 (56.8)	1.7 (6.5)
2	00:30	2.0 (7.6)	1 (3.8)
3	01:40	9.0 (34.1)	1.7 (6.5)
4	10:30	9.0 (34.1)	1.7 (6.5)
5	11:30	5.0 (18.9)	1.7 (6.5)
6	12:00	1.0 (3.8)	1 (3.8)
7	12:45	1.0 (3.8)	1 (3.8)
8	12:50	1.0 (3.8)	1 (3.8)
9	16:00	1.0 (3.8)	1 (3.8)
10	16:15	2.0 (7.6)	1 (3.8)
11	16:45	2.0 (7.6)	1.7 (6.5)
12	17:00	7.0 (26.5)	1.7 (6.5)
Tot	al volume drawn	per day: 55 gallo	ns (208 L)

Refrigerant	GWP ₁₀₀	Ę ,H	Ų "F
CO ₂	1	F,	F.
R-22	1760	_X _E \H	_X H
R-134a	1300	F '	F
R-410A	1924	HFO-1234yf	HFO-1234ze(E)

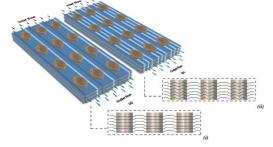
- Hydrofluoroolefins (HFOs)
 - Fluorinated propene isomers
 - R-1234yf ($CF_3CF = CH_2$)
 - R-1234ze ($CF_3CH = CHF$)
 - GWP < 4
 - Mildly flammable

Chemical compounds

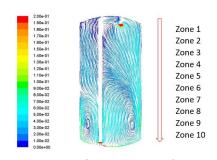
Away from Chlorine (ODP) and Fluorine (GWP) inevitably leads to flammability


Solution Approach

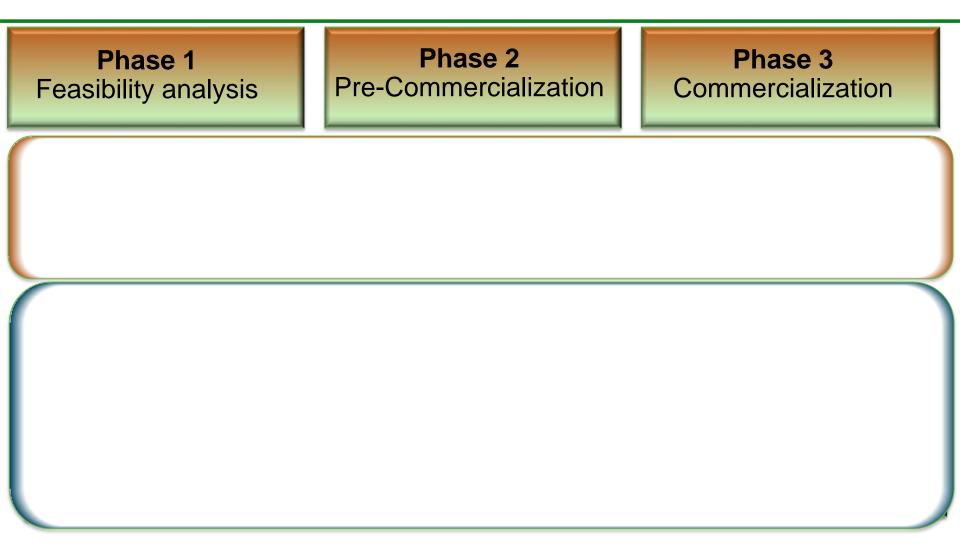
- Halogenated refrigerants have remarkable thermal physical properties, making them appropriate substitutes for R134a.
- Limited research has been conducted on the use of refrigerants in HPWHs.
- HFOs are A2L and are expensive
- Small design modifications will lead to a considerable reduction in total refrigerant charge and significant improvement in performance.


	R134a	R1234yf	R12234ze(E)
Formula	CH ₂ FCF ₃	CF ₃ CF=C	CHF=CHCF ₃
		2	
CAS number	811-97-2	754-12-1	29118-24-9
Molecular mass (g/mol)	102	114	114
ODP	0	0	0
GWP ₁₀₀	1300ª	<1ª	<1 ^a
Safety classification ^b	A1	A2L	A2L
Critical temperature (K) ^c	374.21	367.85	382.51
Critical pressure (MPa) ^c	4.06	3.38	3.64
Sat. pressure at 280 K(MPa)	0.3774	0.4006	0.2803
Enthalpy of vaporization at 280 K (KJ/kg)	193.17	158.52	179.49
Vapor density at 280 K (kg/m³)	18.66	22.253	15.004
Volumetric capacity at 280	3604.55	3527.55	2693.07
K(KJ/m ³)			
Sat. pressure at 340 K(MPa)	2.04	1.9725	1.551
^a IPCC 5 th report, chapter 8 (Myh	nre et al., 201	L3)	
^b ANSI/ASHRAE standard 34-20	13 (A-Non-to)	kic, 1- Nonflar	nmable, 2L-
Mildly flammable, 3- Flammable)		
^c REFPROP 9.1 (Lemmon et al.,	2013)		

Solution Approach


- Frost mitigation technology on evaporator → Improved performance in cold climates.
- Oil management in various components with halogenated refrigerants → Increased capacity and improved durability of the system.
- Small tube evaporator with advanced fin surface; condenser wrap pattern and tube design → Reduction in refrigerant charge; improved system performance.
- New compressor selection and system optimization; other options to increase the system capacity, including incorporating storage media → Higher system capacity; identification of a resilient/flexible grid storage concept.
- Appropriate condenser design and wrap pattern → Higher thermal stratification, leading to improved system performance (UEF and FHR).

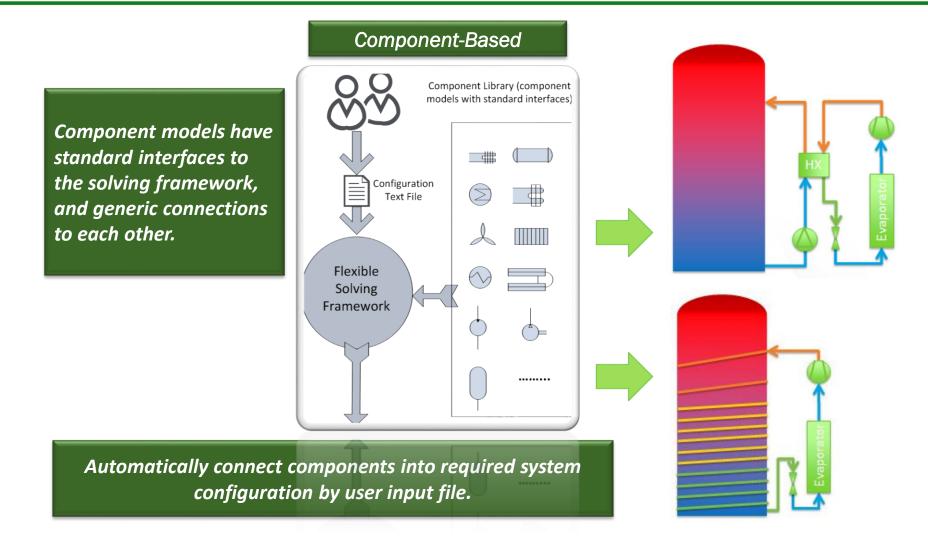
Microchannel sample under frosting conditions.



Microchannel sample under frosting conditions.

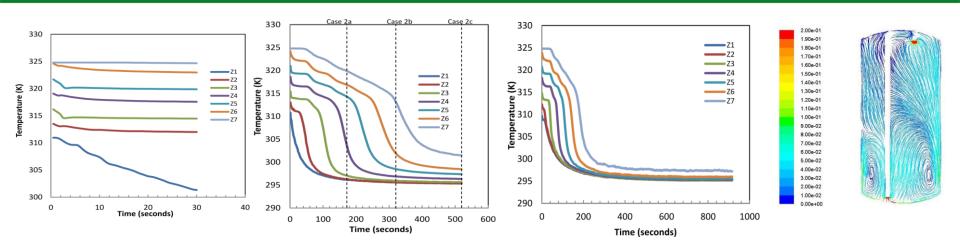
Streamline for water flow in the tank during draw.

Solution Approach

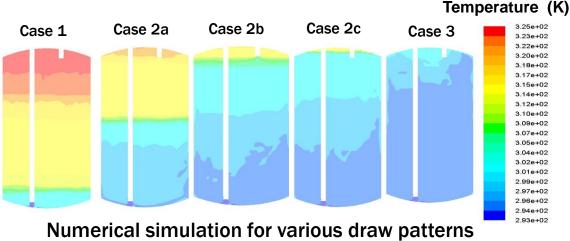


Development of a HPWHs that can achieve at least a 10% higher UEF with a 10–20% increased capacity and 20-30% refrigerant charge reduction

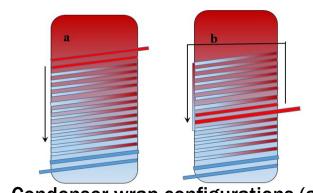
Project Impact


- An improved refrigeration/commercial cooling technology with
 - Unprecedented Unified Energy Factor
 - Improved capacity (Higher FHR)
 - Reduced manufacturing cost
- Enabling development for deployment of A2L and A3 refrigerants
 - Reduction in refrigerant charge
 - Reduced cost of the working fluid
 - Reduced required maintenance due to compact design
- Implications for additional processes
 - Residential air cooling/heating, refrigeration, Process water heating
- At least 250 TBtu energy saving in water heating technology.
 - Aligned with BTO goal to develop energy efficient technology to cause 45% energy saving by 2030 compared to 2010 technologies.
 - Opportunities to create more than 4000 new jobs
 - Paving the path for US manufacturer to expand to international markets

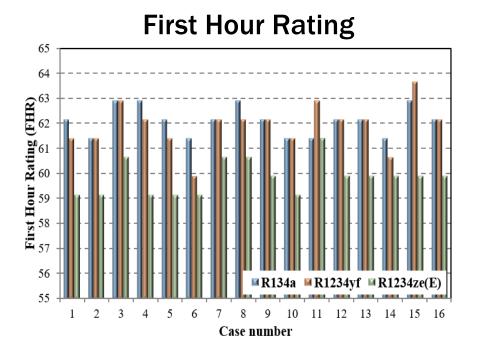
Progress - Development of Model

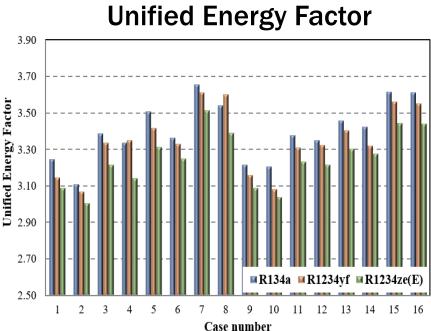

B. Shen, K. Nawaz, A. Elatar, V. Baxter, "Development and Validation of Quasi-Steady-State Heat Pump Water Heater Model Having Stratified Water Tank and Wrapped-Tank Condenser" International Journal of Refrigeration, 2018, 87,78-90.

Progress - Numerical Analysis


Impact of thermal stratification on various water draw patterns

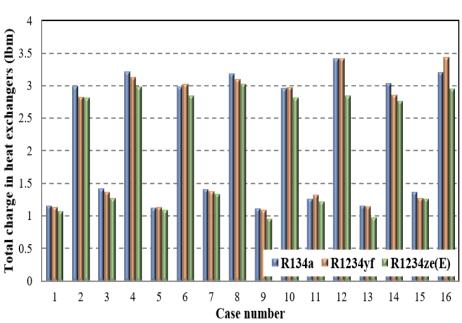
Case#	Draw Pattern	Flow Rate (m³/s* 10 ⁴)	Time (seconds)	Inlet Velocity(m/s)
Baseline		1.85	220	1.46
1	Very small	1	30	0.49
2a	Medium	1.7	176	0.85
2b	Medium	1.7	318	0.85
2c	Medium	1.7	529	0.85
3	High	3	740	1.49


B. Shen, K. Nawaz, A. Elatar, V. Baxter, "Development and Validation of Quasi-Steady-State Heat Pump Water Heater Model Having Stratified Water Tank and Wrapped-Tank Condenser" International Journal of Refrigeration, 2018, 87,78-90.

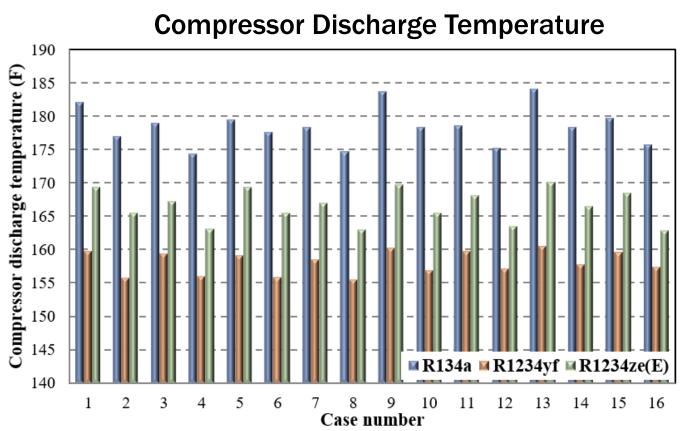

- 46-gallon water tank
- Heat pump T-stat at the top: on at 115 $^{\circ}$ F, off at 125 $^{\circ}$ F.
- Electric element at the top: on at 110°F, off at 125°F.
- Two different evaporator sizes and evaporator flow rate
- Two different heat loss factors from tank
- Two different condenser coil wrap patterns
- Two different condenser tube sizes

Condenser wrap configurations (a) counter flow (b) parallel-counter flow

Case number	Wrap pattern	Evaporator size*	Tank insulation effectiveness (%)	Condenser tube size (inches)
1	Parallel-counter	1 Evap	90	0.31
2	Parallel-counter	1 Evap	90	0.50
3	Parallel-counter	2 Evap	90	0.31
4	Parallel-counter	2 Evap	90	0.50
5	Parallel-counter	1 Evap	95	0.31
6	Parallel-counter	1 Evap	95	0.50
7	Parallel-counter	2 Evap	95	0.31
8	Parallel-counter	2 Evap	95	0.50
9	Counter	1 Evap	90	0.31
10	Counter	1 Evap	90	0.50
11	Counter	2 Evap	90	0.31
12	Counter	2 Evap	90	0.50
13	Counter	1 Evap	95	0.31
14	Counter	1 Evap	95	0.50
15	Counter	2 Evap	95	0.31
EPARTMENT OF E	OFFICE OF E	ENERGY EFFICIENCY &	RENEWABLE ENERGY	0.50

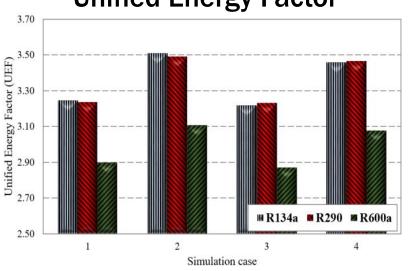


- FHR rating for all various cases is comparable- Medium pattern
- R1234ze (E) has reduced FHR due to lower volumetric capacity
- UEF is more sensitive to tank effectiveness and condenser tube size.


Heat Pump Run Time

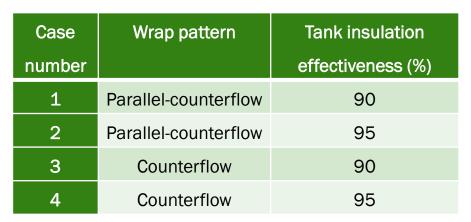
450 350 250 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Case number

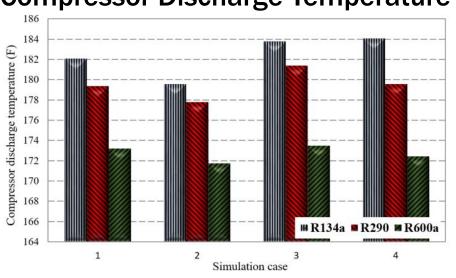
Total System Charge


- Higher heat pump run time is NOT desired. R1234ze (E)'s reduced volumetric capacity impacts the performance.
- Almost equal amount of charge in heat exchangers is an indication of feasibility of drop-in-replacement.

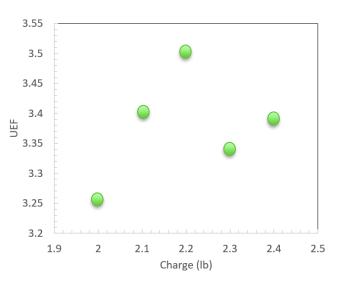
 Due to comparable compressor discharge temperature, no significant modifications are required (compressor type, lubricating oil etc.)

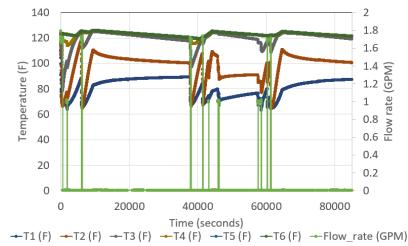
Progress - Parametric Analysis (R290 and R600a)




1.4					
1.2		 			
1		 	Í		
0.8		 			
0.6		 		-	
0.4					
0.2					

Total Systam Charge


Compressor Discharge Temperature


Simulation case



Progress - Experimentation

System UEF at various refrigerant charge

Tank thermal stratification

- Charge optimization is a complex process
- A highly instrumented experimental apparatus has been designed for performance evaluation
- Thermal stratification can be characterized.

Progress - Experimentation

Parameter	R134a	R1234yf	R290
Optimum refrigerant charge	2.3	2.2	1.05
First Hour Rating (FHR)	66	68	67
Unified Energy Factor	3.44	3.40	3.60

- HPWH performance degrades significantly at reduced ambient temperatures.
- Relative humidity becomes an important parameter due to frost growth on evaporator.
- Implementation of compact heat exchangers can lead to reduced refrigerant charge.

Frost growth on the evaporator of HPWH

Stakeholder Engagement

Development of the technology

- Refrigerants selection
- Design of experiments
- Parametric analysis
- Frost formation and oil migration

Meetings with experts at technical platform

- ASHRAE (TC 8.5, TC 1.1)
- Purdue

Presentations/Conference papers

- Five journal articles have been published (ATE, IJR)
- More than twelve conference papers
- ACEEE Hot Water Forum
- IJR and ATE papers have been sited more than 20 times in merely a year

Remaining Project Work

Name	Description
Baseline testing at various	Evaluation of the performance of HPWH using R134a (standard
operating conditions	working fluid) at various operating conditions
Development of performance	Heat Pump Design Modeler to predict the performance of HPWH
model and validation	(UEF and FHR) using baseline working fluid
Modeling of alternate refrigerant	Heat Pump Design Modeler to predict the performance of HPWH
and performance evaluation	(UEF and FHR) using alternate refrigerants (HFOs, HCs and Blends)
Experimentation- Drop in	Testing in appliance chamber at various operation modes using
replacement for alternate	HFOs, HCs and blends as drop in replacement.
refrigerants	
Development of Condenser and	ORNL, with assistance from A. O. Smith, will conduct detailed
Evaporator Technology	analysis of state-of-the-art evaporator and condenser technology.
Alpha Prototype Design and	A. O. Smith will work in conjunction with ORNL to design and build
Construction	at least one first-generation prototype advanced electric HPWH.
Alpha Prototype Testing	The alpha prototype will be tested.
Beta Prototype Design,	Beta prototype will be designed, built, and tested.
Construction, and Testing	
Market Study	A.O. Smith will assess the market potential for the advanced
	electric HPWH based on cost, energy consumption, reliability, and
	other factors.
Field Validation	ORNL and A. O. Smith will jointly conduct field validation of the
	advanced electric HPWH.

Thank You

Oak Ridge National Laboratory Kashif Nawaz (Research Staff) 865-241-0792, nawazk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$1,592K (\$1,200K CRADA)

Variances: None

Cost to Date: \$940K

Additional Funding: None

Budget History CRADA								
FY 202	18 (past)	FY 2019	(current)	FY 2020 (planned)				
DOE	Cost-share	DOE Cost-share		DOE	Cost-share			
\$400K	\$100K	\$375K	\$100K	\$425K	\$100K			

Project Plan and Schedule

Project Schedule												
Project Start: 10-01-2017		Com	pleted	d Wor	·k							
Projected End: 09-30-2020		Activ	e Tas	k (in p	orogre	ess w	ork)					
	•	Milestone/Deliverable (Originally Planned)										
	•	Mile	stone	/Deliv	erabl	e (Act	tual)					
		FY2	018				019			FY2	020	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work	0	0	0		0	0	0		0	0	0	
Development of CRADA												
Baseline system assessment												\Box
Development of system model and validation						•						
Performance prediction of alternative fluids						(•					
Experimentation using alternative fluids								•				
System modification for imporved performance											•	
Filed study and reporting												
Cost-benefit analysis												