

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

### **Evacuated Spheres for Closed-Cell Vacuum Insulation Systems**

Polymeric Vacuum Insulation Spheres



**Coated and Evacuated Insulation Spheres** 



Oak Ridge National Laboratory Diana Hun, Subprogram Manager for Building Envelopes 865.574.5139 hunde@ornl.gov

# **Project Summary**

#### Timeline:

#### Polymeric vacuum insulation spheres

Start date: 10/1/17

Planned end date: 9/30/19

Key Milestones

- 1. Reduced thermal conductivity of base polymer by  $\geq 10\%$  by blending it w/ additives; 6/30/19
- Produced 100 µm spheres with ≥70% void fraction using polymer w/ additives; 9/30/19

#### Coated and evacuated insulation spheres

Start date: 10/1/18

Planned end date: 9/30/19

#### Key Milestones

- 1. Demonstrated uniform thickness and defectfree coverage of coatings on prototype hollow spheres; 3/31/19
- 2. Coated and hollow spheres with demonstrated internal vacuum; 9/30/19

#### Budget:

Total Project \$ to Date:

- DOE: \$750K
- Cost Share: \$0K

#### **Total Project \$:**

- DOE: \$750K
- Cost Share: \$0K

#### Key Partners:

Partners will be formalized after we have proven that we can retain vacuum in the spheres. Potential future partners include:



#### Project Outcome:

Develop an insulation material that has an R-value  $\geq$  14/in, can be manufactured cost-effectively at large scale, and is more practical for building construction than vacuum insulation panels.

### Team

#### **Polymeric Vacuum Insulation Spheres**

Polymer synthesis







Sphere manufacturing







Tomonori Saito, PhD

Bingrui Li

James Klett, PhD

Tristan Alexander Diana Hun, PhD Som Shrestha, PhD Kaushik Biswas, PhD

Material characterization & integration

#### **Coated and Evacuated Insulation Spheres**



#### Team expertise

- **Building envelopes**
- Insulation materials
- Heat transport
- Polymeric chemistry
- Polymer processing
- Organic/inorganic thin film coatings

## Challenge

- About 50% of existing residential and commercial buildings lack or have minimal insulation as they were built before energy codes
- The technical potential from adding 2 in. of R12/in. insulation to existing residential and commercial walls is 1.1 quads of energy by 2030\*
- DOE's Building Technologies Office is seeking for cost-effective insulation materials with R-value ≥14/in. that are suitable for envelope retrofits and more practical for building construction than vacuum insulation panels.



Year of Construction of Commercial Buildings

2012 Commercial Buildings Energy Consumption Survey

\*2014 DOE Windows and Building Envelope Roadmap

# **Approach & Impact**

- Vacuum insulated panels (~R35/in)
  - Open-cell vacuum insulation
  - Damages diminish R-value by factor ~4
  - Not widely used in buildings

#### • Evacuated spheres (≥R14/in)

- Closed-cell vacuum insulation
- Minimal decrease in thermal performance after localized damage
- Assembled into a board w/ binder
  (binder's thermal conductivity ~0.024 W/m·K)
- Board can be cut as needed
- Proposed approaches
  - Polymeric vacuum insulation spheres (PVIS)
  - Coated and evacuated insulation spheres (CEIS)

#### State-of-the-art Vacuum insulation panels



- C Evacuated open cell
- Air/vapor barrier
- Damaged barrier
- Pores at ambient pressure

#### Evacuated spheres with binder

≥R14/in

- O Evacuated hollow sphere
- Spherical air/vapor barrier
- Damaged barrier
- Sphere at ambient pressure
- Binder

# **Main Parameters**

- Void fraction
- Thermal conductivity of gas in spheres
  - Sphere diameter
  - Amount of air within sphere ightarrow pressure
  - Thermal conductivity of air in 100 µm sphere

| Inside pressure | Thermal conductivity of   |
|-----------------|---------------------------|
| (mbar)          | air inside sphere (W/m·K) |
| 1.0             | ~0.013                    |
| 0.1             | ~0.0025                   |
| 0.01            | ~0.0005                   |

- Gas permeability of shell
- Thermal conductivity & shell thickness
- Thermal conductivity of binder

#### **Evacuated Spheres with Binder**



O Evacuated hollow sphere

Spherical air/vapor barrier

Binder

### Heat Conductivity Contribution in Conventional Insulation Materials



#### **Polymeric Vacuum Insulation Spheres: Methodology**



### **PVIS: Targets**

|                                               |        | Targets derived using<br>equations from the literature |           |
|-----------------------------------------------|--------|--------------------------------------------------------|-----------|
| Parameters                                    | FY19   | Targets to achieve<br>PVIS board w/<br>R-value ≥14/in  |           |
| Sphere diameter (µm)                          | ≤ 350  | ~200                                                   | Evacuated |
| Void fraction within sphere (%)               | ≥ 70   | ≥ 90                                                   |           |
| Void fraction within binder (%)               | -      | ≥ 70                                                   |           |
| Pore diameter (μm)                            | ≤ 50   | 10 – 20                                                |           |
| Pressure inside pore (mbar)                   | ≤ 100  | 0.1 – 1                                                |           |
| Polymer thermal conductivity (W/m·K)          | ≤ 0.15 | ≤ 0.1                                                  |           |
| Polymer oxygen transmission rate (cm³/m²-day) | 0.04   | ~0.005                                                 | Polymer   |
| Shell thickness (µm)                          | ≤ 5    | 1 – 2                                                  | Binder    |
| R-value/in without binder                     | ≥5     | ≥ 22                                                   |           |
| R-value/in with binder*                       | -      | ≥ 14                                                   |           |
|                                               |        |                                                        |           |

\*R-value of binder assumed to be ~6/in.

# **PVIS: Material Selection**

- Polymers
  - Criteria: low cost, low thermal conductivity, modulus of elasticity ≥1.5GPa
  - Selected poly(methyl methacrylate) (PMMA) and polystyrene (PS)
  - Flammability significantly decreased with additives
- Desiccants
  - Evaluating different types of zeolites
  - Critical parameters: water saturation capacity, immiscible with polymer, loading ratio
- Inorganic additives to lower thermal conductivity and gas permeability
  - Critical parameters: miscibility with polymer, loading ratio, extrudability
  - Evaluating 200 300 nm nanoclay particles

#### SEM of Cross-Section of Extruded Polymer w/ Blowing Agent



- PMMA w/ 10 wt% water-saturated zeolite 3A
- $\geq$ 70% void fraction

# **PVIS: PMMA + Nanoclay Particles**

- Thermal conductivity (TC) of polymer
  - PMMA baseline
    TC = 0.14 W/m·K
  - With 20 wt% nanoclay  $TC = 0.12 W/m \cdot K$
  - Target  $\leq$  0.1 W/m·K



 $\begin{array}{c} \text{~4.5}\times\text{~4.5}\times\text{~0.37} \\ \text{PMMA baseline} \end{array}$ 



~4.5  $\times$  ~5  $\times$  ~0.33 PMMA w/ 20 wt% nanoclay

Non-optimized

- Oxygen transmission rate (OTR) of polymer at 23°C and 50% RH
  - PMMA baseline (t  $\simeq 400 \ \mu m$ ) = 298 cm<sup>3</sup>/m<sup>2</sup>-day
  - − With 10 wt% nanoclay (t  $\cong$  400 µm) = 174 cm<sup>3</sup>/m<sup>2</sup>-day  $\rightarrow$  42% decrease  $\neg$
  - − With 20 wt% nanoclay (t  $\cong$  400 µm) = 143 cm<sup>3</sup>/m<sup>2</sup>-day  $\rightarrow$  52% decrease  $\int$  nanoclay layout
  - Target ≤ 0.005 cm<sup>3</sup>/m<sup>2</sup>-day (Guin et al. (2014) achieved this permeability w/ 4.3  $\mu$ m-thick film of PET w/ 87 wt% nanoclay at 23°C and 0% RH)
- Next steps
  - Increase nanoclay loading
  - Evaluate extrudability, TC and OTR
  - Study alternate method to decrease permeability: co-extrusion of coating

## **PVIS: Air Assisted Method**

- Key parameters being evaluated
  - Extrusion temperature, speed and nozzle diameter
  - Air temperature and flow rate
  - Polymer type and nanoclay loading
  - Desiccant type, loading, and water content
- Method produces spheres but repeatability is difficult at nonoptimized lab setting
  - Bench-scale proof of concept
  - Industry partner to optimize manufacturing procedure after it has been demonstrated that PVIS can attain ≥R14/in

#### **High Throughput Rate Potential**



SEM of Extruded Parts PMMA w/ 5 wt% zeolite 3A



Air temperature and flow rate highly influence the shape of the extruded part

# **PVIS: Mechanical Chopping Method**

- Key parameters being evaluated
  - Most variables shown in slide 11
  - "Chopping" gear teeth size and speed
- First prototype  $\rightarrow$  single "chopping" gear



• Next prototype: use precision machining to manufacture double "chopping" gears

#### SEM of Cross-Section of Extruded Part w/ Blowing Agent



- 1.2 mm diameter
  - Reduce by tailoring gear teeth size
- Void fraction > 50%

#### Video of High Throughput Rate Potential



# **PVIS: Remaining Work**

#### • FY19

- Measure pressure inside spheres
- Refine steps to lower permeability of polymer
- FY20 and FY21 (PVIS only funded for FY19)
  - Feasible path to attain  $\geq$ R14/in based on results from FY19

|             | Parameters                                 | FY19   | <b>F</b> Y20 | FY21: Target to achieve PVIS<br>board w/ R-value ≥14/in* |
|-------------|--------------------------------------------|--------|--------------|----------------------------------------------------------|
| Sphere di   | ameter (µm)                                | ≤ 350  | ≤ 300        | 200                                                      |
| Void fract  | ion within sphere (%)                      | ≥ 70   | ≥ 90         | ≥ 90                                                     |
| Void fract  | ion within binder (%)                      | -      | -            | ≥ 70                                                     |
| Pore diam   | neter (µm)                                 | ≤ 50   | ≤ 30         | 10 – 20                                                  |
| Pressure    | inside pore (mbar)                         | ≤ 100  | ≤ 10         | 0.1 – 1                                                  |
| Polymer t   | hermal conductivity (W/m·K)                | ≤ 0.15 | ≤ 0.12       | ≤ 0.1                                                    |
| Polymer (   | DTR (cm <sup>3</sup> /m <sup>2</sup> -day) | 0.04   | 0.02         | ~0.005                                                   |
| Shell thick | kness (μm)                                 | ≤ 5    | 2 – 5        | 1 – 2                                                    |
| R-value/ir  | n without binder                           | ≥ 5    | ≥ 10         | ≥ 22                                                     |
| R-value/ir  | n with binder*                             | -      | -            | ≥ 14                                                     |
|             |                                            |        |              |                                                          |

\*Targets derived using equations from the literature

\*\*R-value of binder assumed to be 6/in.

OTR: oxygen transmission rate







Extruded part w/  $\geq$  70% porosity



Extruded spheres w/  $\leq 350~\mu m$  diameter



Identified more robust manufacturing method w/ high throughput rate

#### **Coated and Evacuated Insulation Spheres: Methodology**

- Start with naturally-occurring or synthesized hollow microparticles/spheres with a porous shell
- Coat the porous shell, followed by post-deposition thermal processing in a vacuum furnace to create evacuated insulation spheres
- Thermal post-processing to simultaneously evacuate the hollow interior and densify the coating to impact gas impermeability
  - Processing parameters can be tailored to allow evacuation of the core (via gas diffusion through the shell) before coating densification is complete



# **CEIS: Microspheres and Coatings**

- Selection of porous walled, hollow glass microspheres
  - 30-90 µm spheres obtained from Mo-Sci
- Selection of coatings and methods
  - Low thermal conductivity
  - Conformal coating; highest physical/chemical bonding w/ particles
  - Solubility in environmentally-friendly and commercially viable solvents (e.g., ethanol, water, etc.)



Particle size: 30-90 µm



Shell thickness: ~1 µm



Pore size: 10-300 nm

# **CEIS: Polymeric Coating Agents & Methods**

- Multiple polymer solutions were tested w/various solvents
- Selected coating method Dip coating
  - Inexpensive industrial coating process, easy to scale-up
  - Microsphere and polymer solution mixed in an orbital shaker followed by separation of coated microspheres via centrifuge
- Post-coating annealing to densify the coatings and impart shell impermeability
  - Annealing temperature selected based on thermal characterization of polymers

Selected polymers based on initial coating experiments

| Polymers                   | Solvent         |
|----------------------------|-----------------|
| Polyvinyl butyral (PVB 98) | Ethanol/Toluene |
| Elvacite 2028              | - Ethonol       |
| Mowital B60H               | Ethanoi         |
| Polyvinyl alcohol (PVA)    | Water           |





## **CEIS: Evaluation of Polymeric Coatings**

- Scanning electron microscopy (SEM) for microstructural examination of coatings
- Energy dispersive X-ray (EDAX) is to detect signals from different elements
  - Carbon [C] from polymer coatings

Example 1 – Inhomogeneous coating w/discontinuous coverage; weak C signal



Example 2 – Dense & uniform coating; strong C signal



# **CEIS: Inorganic Coating Agents and Methods**

- Selected coating agent: Soda-lime glass and Borosilicate glass
  - Inexpensive, chemically stable & extremely workable
  - Targeted thickness: < 0.5 μm</li>
- Method: sputter thin film coating



#### Motorized rotation for conformal coatings

Glass film deposition

- Powder coatings: GL 1734
  - Used as a sealing glass
  - Solvent: Terpineol
  - Particle size: 5 nm
- Method: Dip-coating (more economical alternative to sputter thin film coating)

Chemical Composition by Weight Percent (wt %)

| Phosphorus oxide (P <sub>2</sub> O <sub>5</sub> ) | 44.37 - 50.37 |
|---------------------------------------------------|---------------|
| Antimony oxide (Sb <sub>2</sub> O <sub>3</sub> )  | 9.83 - 13.83  |
| Barium oxide (BaO)                                | 9.06 - 13.06  |
| Zinc oxide (ZnO)                                  | 8.64 - 12.64  |
| Calcium oxide (CaO)                               | 6.08 - 8.08   |
| Sodium oxide (Na2O)                               | 3.47 - 6.47   |
| Potassium oxide (K <sub>2</sub> O)                | 3.25 - 5.25   |
| Lithium oxide (Li <sub>2</sub> O)                 | 0.89 - 2.89   |
| Alumina (Al <sub>2</sub> O <sub>3</sub> )         | 0.34 - 2.34   |
| Boron oxide (B <sub>2</sub> O <sub>3</sub> )      | 0.5 - 1.5     |
|                                                   |               |

#### Custom-designed powder (Mo-Sci)

## **CEIS: Evaluation of Inorganic Coatings**

SEM/EDAX show uniform coverage for inorganic glass based coatings



### **CEIS: Inorganic Coating**

Random sampling of sputtered borosilicate glass coating on microspheres



# **CEIS: Remaining Work**

- FY19 (CEIS only funded for FY19)
  - Create conformal coatings with high resistance to gas permeability
  - Create coated spheres with demonstrated internal vacuum
  - Perform preliminary cost analysis
- FY20
  - Define internal pressure to achieve desired step-wise thermal performance (R6/in., R10/in. and R14/in.)
  - Develop 6 x 6 in. prototype CEIS-based insulation that can achieve >R6/in.
- FY21
  - Improved 6 x 6 in. prototype CEIS insulation that can achieve R14/in.
  - Pursue scale-up and commercialization strategy

#### Preliminary R/inch calculations

| P <sub>int.</sub> (mbar) | k <sub>air</sub><br>(W/m⋅K) | Overall R/in. |
|--------------------------|-----------------------------|---------------|
| 10.0                     | ~0.0197                     | 6.8           |
| 1.0                      | ~0.0061                     | 12.4          |
| 0.1                      | ~0.0008                     | 19.2          |
| 0.01                     | ~0.0001                     | 20.8          |

#### Assumptions:

- Hollow spheres of 70 µm average diameter
- Binder polyurethane (0.024 W/mK)
- 64% void fraction of randomly packed spheres

### U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

### **Stakeholder Engagement**

- Both PVIS and CEIS are early-stage R&D projects
- Potential industry partners
  - Akzo Nobel: manufacturer of Expancel polymeric spheres
  - MoSci: manufacturer of hollow microspheres
  - Orca Coolers: may consider manufacturing if process is simple
- Start licensing discussions after proving that we can control vacuum level and retain vacuum within the spheres
  - PVIS: US Patent Application Serial Number 62/769,590
  - CEIS: Invention Disclosure 201804138, DOE S-138,805
- Collaborating with ORNL team that is developing novel models that predict effective thermal conductivity in new insulation materials
- Presentation at Buildings XIV Conference in December 2019







# **Thank You**

**Oak Ridge National Laboratory** 

PI: Diana Hun, Subprogram Manager for Building Envelopes <u>hunde@ornl.gov</u>

> Co-PI: Kaushik Biswas, R&D Staff biswask@ornl.gov

### **REFERENCE SLIDES**

### **Project Budget**

Project Budget: FY18: \$250K FY19: \$500K Total: \$750K Variances: none Cost to Date: \$445K Additional Funding: none

| Budget History |            |           |            |                  |                  |  |  |
|----------------|------------|-----------|------------|------------------|------------------|--|--|
| FY 2           | 2018       | 8 FY 2019 |            | FY 2020<br>(plar | 0 – TBD<br>nned) |  |  |
| DOE            | Cost-share | DOE       | Cost-share | DOE              | Cost-share       |  |  |
| \$250K         | 0          | \$500K    | 0          | TBD              | 0                |  |  |

# **PVIS: Project Plan and Schedule**

| Deliverable/Milestone                                                                                                                                                 |      | FY18   |    |     |      | FY19 |      |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----|-----|------|------|------|------|--|
|                                                                                                                                                                       |      | Q2     | Q3 | Q4  | Q1   | Q2   | Q3   | Q4   |  |
| Section of polymers and blowing agents, and preliminary extrusion trials                                                                                              |      |        |    |     |      |      |      |      |  |
| Selected 3 - 5 thermoplastic polymers w/ either glass transition or melting temperatures lower than the processing temperature and a modulus of elasticity > 100 MPa. |      |        |    |     |      |      |      |      |  |
| Selected 3 - 5 blowing agents that are nonreactive with polymers while the sphere is being blown and stable after the sphere has been blown.                          |      |        |    |     |      |      |      |      |  |
| Modified system to extrude a polymer entrained w/ dispersed blowing agent particles.                                                                                  |      |        |    |     |      |      |      |      |  |
| Selected a polymer & blowing agent that can be extruded to produce spheres.                                                                                           |      |        |    |     |      |      |      |      |  |
| Optimization of Thermal Conductivity                                                                                                                                  |      |        |    |     |      |      |      |      |  |
| Produced 200 μm spheres                                                                                                                                               |      |        |    |     |      |      |      |      |  |
| Extruded parts in which the inorganic additives and polymer are uniformly blended                                                                                     |      |        |    |     |      |      |      |      |  |
| Produced 100 - 200 µm spheres with ≥50% void faction                                                                                                                  |      |        |    |     |      |      |      |      |  |
| Reduced thermal conductivity of base polymer by $\geq 5\%$ by blending it w/ additives                                                                                |      |        |    |     |      |      |      |      |  |
| Produced 100 μm spheres with ≥60% void faction using polymer w/ additives                                                                                             |      |        |    |     |      |      |      |      |  |
| Reduced thermal conductivity of base polymer by ≥10% by blending it w/ additives                                                                                      |      |        |    |     |      |      |      |      |  |
| Developed method to measure the vacuum within the sphere cavities                                                                                                     |      |        |    |     |      |      |      |      |  |
| Produced 100 μm spheres with ≥70% void faction using polymer w/ additives                                                                                             |      |        |    |     |      |      |      |      |  |
| Produced spheres with cavities that are pressurized to $\leq$ 100 mbar                                                                                                |      |        |    |     |      |      |      |      |  |
| Development of Mechanism to Reduce Air Permeability of Base Polymer                                                                                                   |      |        |    |     |      |      |      |      |  |
| Identified mechanism to reduce the air permeability of PVIS shell to ≤0.3 cm³/m²-day                                                                                  |      |        |    |     |      |      |      |      |  |
| Identified mechanism to reduce the air permeability of PVIS shell to $\leq 0.07$ cm <sup>3</sup> /m <sup>2</sup> -day                                                 |      |        |    |     |      |      |      |      |  |
|                                                                                                                                                                       | Comp | oleted |    | Reg | ular |      | Go/N | o Go |  |

### **CEIS: Project Plan and Schedule**

| Deliverable/Milestone                                                                                                                                                                                                                                                                                                  |       | FY18 |      |      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|------|--|--|
|                                                                                                                                                                                                                                                                                                                        |       | Q2   | Q3   | Q4   |  |  |
| Material Screening                                                                                                                                                                                                                                                                                                     |       |      |      |      |  |  |
| Selected base materials, coating agents and method(s), and post-coating thermal processing methods for evacuation and shell densification.                                                                                                                                                                             |       |      |      |      |  |  |
| Preliminary (year 1) cost estimates of bulk materials and thermal processing, and evaluation of cost-<br>competitiveness with vacuum insulation panels (\$0.25/ft²/R). The eventual target is similar to the projected cost of<br>MAI, which is \$0.05-0.12/ft²/R based on production volume.                          |       |      |      |      |  |  |
| Coated Particle Development and Characterization                                                                                                                                                                                                                                                                       |       |      |      |      |  |  |
| Demonstrated uniform thickness and defect-free (no open pores or voids) coverage of coatings based on micro-<br>structural analysis pre- and post-coating and after thermal processing of prototype hollow spheres. The goal is to<br>create dense coatings of $\leq 2 \ \mu m$ thickness on 50-100 $\ \mu m$ spheres. |       |      |      |      |  |  |
| Hollow spheres developed with dense and conformally-coated shells that exhibit high resistance to gas permeability.                                                                                                                                                                                                    |       |      |      |      |  |  |
| Develop and Test Evacuated Particles                                                                                                                                                                                                                                                                                   |       |      |      |      |  |  |
| Coated and hollow spheres with demonstrated internal vacuum (10 mbar or lower                                                                                                                                                                                                                                          |       |      |      |      |  |  |
| 🗖 Completed 🔳 Reg                                                                                                                                                                                                                                                                                                      | jular |      | Go/N | o Go |  |  |