

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Active Insulation Systems

Oak Ridge National Laboratory

Florian Antretter

+1 865 241 9151, antretterf@ornl.gov

Project Summary

Timeline:

Start date: October 1, 2018 Planned end date: September 30, 2019 Key Milestones:

- 1. Determined simulation procedure, December 31
- 2. Summarized simulation results, June 30
- 3. Developed schematic designs for two active insulation systems (AISs), September 30

Budget:

Total Project \$ to Date:

- DOE: \$240K
- Cost share: \$0K

Total Project \$:

- DOE: \$350K
- Cost share: \$0K

Key Partners:

The project is an initial scoping study. After confirmation that active insulation achieves significant energy savings, potential partners for the highest impact solutions will be identified in a targeted manner.

Project Outcome:

Simulation results will indicate whether AISs are a technology that should be pursued to make building envelopes dynamic based on:

- Potential energy savings
- Potential reductions in peak demand

Challenge

- Current opaque envelopes are static systems in dynamic environments that cannot do the following:
 - Use beneficial outdoor conditions
 - Use dynamic controls
 - Control and optimize heat storage
 - Preconditioning
 - Integrate renewable sources
- Building envelope storage capacity is being underused
 - Single family wood-frame building storage capacity ~11 kWh/K (Diurnal use ~30 kWh, Mass Walls ~25 kWh/K, Powerwall II: 13.5 kWh)
 - Single family water heater storage capacity ~0.22 kWh/K
- AISs
 - Can they save energy and provide grid services?

Approach and Team

AIS: Material/system that changes thermal conductivity based on external control

Florian Antretter Dynamic Building Performance

Diana Hun, PhD Envelope Systems New Materials

Systems and Technologies

Mechanism	Description	Peference	Conduc	Speed of	
WICCHAINSIN					
	Variable conductance insulation	Benson (1994)	0.025	0.200	-
	Hydrogen adsorption/desorption	Horn (2003)	0.003	0.140	-
Gas riessure	Variable pressure aerogel blanket	Berge (2015)	0.011	0.017	Minutes
	Variable pressure fumed silica VIP	Berge (2015)	0.007	0.019	Minutes
Convection (liquid)	Fluid tanks with different conductivity	Al-Nimr (2009)	0.018	0.640	-
Convection (air)	Permeodynamic wall (breathing wall)	Imbabi (2006)	0.002	0.039	Minutes
	Parietodynamic wall (dynamic void space)	Imbabi (2012)	0.036	0.130	Minutes
	Translucent element with insulation panel between two air gaps	Pflug (2015, 2012)	0.046	0.170	Minutes
	Porous wall with cross airflow	Ascione (2015)			Minutes
	Forced airflow through insulation layer	Elsarrag (2006, 2009, 2012)	0.014	0.090	Minutes
	Collapsing number of air layers	Kimber (2014)	0.026	0.800	Minutes
Multi-layer	Transparent exterior with movable multilayers	Pflug (2017)	0.013	0.262	Seconds
Thormodiodo	Direction of nanotube	Wu (2014)	0.400	1.200	-
inermodiode	Bidirectional thermodiode	Varga (2002)	0.061	0.360	Minutes

Most promising technologies provide controllable thermal conductivity in a broad range with fast switching

Modeling and Control

ΤοοΙ	Approach	Reference(s)
RC model	Simplified model, limited applicability to reality	Park (2015), Menyhart & Krarti (2017), Shekar & Krarti (2017)
ESP-r	Source code modifications	Loonen et al. (2014)
TRNSYS	No detailed description about implementation	Pflug et al. (2015)
TES	Air channels to short circuit insulation	Elsarrag et al. (2012)
Energy Plus	Two built-in approaches:"Surface Control: Movable Insulation"Energy Management System	Pflug et al. (2017), Favoino et al. (2017), Jin et al. (2017), Homem et al. (2017)

Loonen et al. (2014):

"Despite the limitations in existing software tools, researchers and engineers have developed numerous customized simulation strategies for predicting the performance of responsive building elements in whole-building performance simulation programs... So far, most of these attempts have used workarounds, which tend to rely on approximations or simplifications."

Research Gaps

- Proposed technologies
 - Only tested at lab level or with bench-scale prototypes
 - Most have high energy demand to change thermal conductivity
 - Focus on exterior walls
 - Do not address building integration
- Control strategies are very simple or too complex
- No coupling with dedicated heat charging/discharging system
 - Hydronic system
 - Direct electric heat
- No reproducible and easy-to-implement simulation methods

Application Scenarios

Sce- nario	Envelope assembly	Assembly and monitors	Control Comments				
1	AIS _{ext} + low thermal mass	•	Control: Difference in surface temperature Lightweight indoor-outdoor coupling				
2	AIS _{ext} + high thermal mass		Control: Difference in surface temperature Mass indoor-outdoor coupling				
3	Exterior static insulation + high thermal mass + AIS _{int}	•	Control: Difference in surface to zone temperature, time of day Pre-conditioning with HVAC (Peak Reduction)				
4 (a) (b)	AIS _{ext} + high thermal mass + AIS _{int}	• • •	Control: Difference surfaces to thermal mass temperature, difference surface to zone (a) free energy, (b) additional pre-conditioning				
5	AIS _{ext} + high thermal mass + dedicated heating/cooling + AIS _{int}	•	Control: Difference surfaces to thermal mass temperature, time of day energy price Total control over charging and discharging time with highest localized comfort control				
	Energy Price Exterior Active Insulation Static In	surface • Thermal mass sulation No Insulation	 Interior surface Zone operative temperatures Cladding Drywall Low Mass High Mass 				

Modeling in Energy Plus

Simulation Study Outline

144 Scenario variants

Example Results: Residential Summer

Impact - Energy Savings

Impact - Grid Services (Los Angeles Example)

- Shift cooling demand away from "ramp" using active loading
- Lower consumer cost due to Time Of Use price

Stakeholder Engagement

- Presentation at the ASHRAE 2019 Buildings XIV International Conference
- Ongoing discussions with other national labs on ongoing simulation efforts on thermal storage

FY20 and Beyond (DOE funds approved only for FY19):

Based on impact and requirements:

- Involve industry to develop materials and systems
- Involve industry to include controllable building envelopes in building energy management systems
- Discussions with utilities on load shedding, shifting, and modulation requirements

Remaining Work and Outlook

Remaining FY19 Work:

- Simulation Study
 - Complete screening simulations
 - Pick and optimize high-potential options
 - Optimize control with evolutionary algorithms
- AISs schematic designs that integrate simulation results

Building envelope systems with AIS can significantly

- reduce energy for heating and cooling (up to 70% from free energy sources in first iteration of screening study)
- provide grid services (shed, shift, and even modulate loads) in all climate zones to make the building envelope an efficient active component

Future Work (Funds Approved Only for FY19)

Thank You

Oak Ridge National Laboratory Florian Antretter <u>antretterf@ornl.gov</u> +1 865 241 9151

REFERENCE SLIDES

Project Budget

Project Budget: \$350K Cost to Date: ~\$136K

Budget History							
FY 2018		FY 2019	(current)	FY 2020 – FY 2021 (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$130K	\$0	\$220K	\$0	TBD	\$0		

Project Plan and Schedule

	10/18	11/18	12/18	01/19	02/19	03/19	04/19	05/19	06/19	07/19	08/19	09/19
Task 1: Assessment of the State-of-the-Art						•					•	
Literature review												
Technologies and systems												
Simulation methods, tools, controls												
Optimization control												
Identification of research gaps			D1									
Establish simulation procedure												
Simulation tool												
Building models												
System modeling												
Application scenarios												
Scoping study set-up												
Report			D2 🔪									
Task 2: Feasibility Analysis												
General preparation												
Simulation model set-up												
Logic implementation for control						D3						
Full-scale parametric study												
Set-up full-scale parametric simulations												
Run and assess full-scale parametric simulations												
Identify options with potential												
In-depty simulation study												
Iterative control improvement												
Summarize full-scale and in-depth parametric												
simulation study									G1			
Identify ideal scenarios									D4			
Task 3: Initial Development of Active Insulation Systems						1					1	
Combine information												
Identify conductivity range, applications												
Identify large scale manufacturing requirements												
Identify cost effectiveness												
Schematic designs												
Describe schematic designs												D5

Deliverables and Milestones

Deliverables/Milestones	Due date	Туре
Submitted a summary of the literature to guide the research	12/31/18	Regular
Established a simulation procedure for a 6-month scoping study	12/31/18	Regular
Integrated logic, thermal, and optimization control models for selected residential and/or commercial prototype buildings into simulation environment	3/30/19	Regular
Identified example implementation scenarios for active insulation systems	6/30/19	Regular
Completed summary of simulation results on potential energy savings estimates and benefits to the grid. Decide on: Energy consumption and peak loads can be decreased by at least 20%	6/30/19	Go/No Go
Submitted schematic designs for two AISs based on info gathered in Tasks 1 and 2	9/30/19	Regular