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Project Summary

Timeline:

Start date: Oct. 2018

Planned end date: Sep. 2021

Key Milestones

1. Milestone 1 (Sep. 2019): Select most 

promising potential use cases / applications for 

thermal switches and tunable thermal storage 

materials and perform multiscale modeling.

2. Milestone 2 (Sep. 2019): Thermal Storage: 

Demonstrate transition temperature (Tt) in 18-25C 

for solid-solid transitions with H ~ 70-100 J/g. 

Thermal switch: Demonstrate switch ratio of 2 - 5.

Budget:

Total Project $ to Date: 

• DOE: $2,450,000

• Cost Share: N/A

Total Project $:

• DOE: $6,450,000

• Cost Share: N/A

Key Partners:

Project Outcome:

Enables flexible and dispatchable thermal 

storage by expanding traditional thermal 

storage R&D beyond energy density 

optimization to include tunability and control. 

Applications (use cases) include dedicated 

thermal storage, equipment integrated thermal 

storage, and building envelope integration. 
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Georgia Institute of Technology
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Challenge – Flexible Energy Storage is Needed

Source: California ISO. "What the duck curve tells us about managing a green grid." (2016)

• Needed for balancing load and 

generation on the electricity grid 

match at a variety of timescales

• Storage provides ways to shift 

energy – helps to move variable 

generation to meet demand

Source: Bedir, Abdulkadir, Noel Crisostomo, Jennifer Allen, Eric Wood, and Clément Rames. 2018. California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025. California Energy Commission. Publication 

Number: CEC-600-2018-001

Need energy 

storage

Changes in electricity demand, such as 

electric vehicles, require flexible and 

dispatchable energy storage
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Challenge –
Traditional Approaches are NOT Flexible, 

Dispatchable, or Cost Effective

https://bma1915.com/projects/oak-ridge-national-laboratory-zero-energy-building-residence-alliance-zebra-

homes/

Source: Miller et al. 2012 ACEEE Summer Study on Energy Efficiency in 

Buildings

Inactive 

Simulation results illustrate 

that TES based on static

PCM remains inactive for a 

major portion of the year 

(internal analysis)

Field tests have indicated 

limited PCM activity South Wall East Wall

Limited annual utilization  Limited 

energy efficiency opportunity
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Approach – Thermal Control and Storage

Tunable PCM can provide a substantial (e.g. 7x) 

improvement in energy storage utilization over the year. 

Simulation Details: 

 Physics-based envelope use case. 

 Static PCM transition temperature 72-73 F (22.2-22.8 C).

 Annual simulations, nationally averaged.
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Approach – Thermal Switch and Storage

Note: Applications are not limited to the building envelope.  

Use Case Example: Tunable thermal storage and 

switching integrated into the building envelope

Tunable thermal storage

(Tunable transition temp., 𝑇𝑡)

Thermal switch

(Switch Ratio: 𝑟 =
𝑅𝑜𝑓𝑓

𝑅𝑜𝑛
)
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Approach – Thermal Switch and Storage

Rint Rext𝑹𝒔𝒘𝒊𝒕𝒄𝒉 𝑹𝒔𝒘𝒊𝒕𝒄𝒉PCM Rins Rss
Ti TeQin Qout

Sheath.

+

Siding

InsulationPCM SwitchSwitchTi Te

Qin Qout

Indoor Outdoor

Both sw. 

closed

Only left 

switch open
Only right 

switch open
Both sw. 

closed

Simulation Details: 

 Switch Ron = 1.4, Roff = 7.1.  Thickness 1”.    

 Traditional PCM (static). 

 Original wall: Rins+Rss = 14.5.
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Approach – Thermal Switch and Storage

1-day thermal load (kW-h), 

for 100 ft2 wall

Thermal switches enable:

• Greater capacity to utilize diurnal temperature swings to 

maximize energy savings (e.g. 5x savings)

• Ability to shape thermal demand (time shifting).

Baseline With 

PCM

With PCM 

and thermal 

switch
Both sw. 

closed

Only left 

switch open
Only right 

switch open
Both sw. 

closed
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Approach – Multiple Use Cases and Applications

• Low TRL research has multiple use cases and applications

• Tunable PCM + switch can be integrated into multiple 

applications to control PCM charge/discharge during 

operation

• Broad range of transition temperatures facilitates both 

heating and cooling application

Envelope-integrated 

application
Equipment-integrated 

application
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Approach & Progress: All-solid, Tunable PCM

Goal: Develop thermal energy storage (TES) materials that are: 
 All solid state (encapsulation-free)
 Dynamically tunable

Approach: 
1) For all-solid state: Work with two classes of solid-solid PCMs to 
optimize their transition temperature (Tt) in 18 - 25 C:

a) Polyols
b) Comb-branch Micro block Polymer (CMP)

2) For dynamic tunability: 
 Since both polyols and CMPs have polar molecules, voltage-
driven tunability can be achieved by ion insertion and removal.
 Leverages extensive knowledge from the electrochemical battery 
field.
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Approach & Progress: All-solid, Tunable PCM

Polyols: solid-solid, phase change energy ΔH ~ 100 J/g.  
(Compare typ. solid-liquid PCMs,  ΔH ~ 200 - 300 J/g.)

Potential Impact: 1 cm thick polyol on walls & ceiling 
of 2,000 ft2 home  44 Ton-hrs of thermal energy.  

CMP: Solid-solid, phase change ΔH ~ 60 - 100 J/g.                   

TM
E:

 T
ri

m
e

th
y
lo

le
th

a
n

e

N
P

G
: N

eo
p

en
ty

lg
ly

co
l  

Tt= 90 

Tt = 45 

Tt = 25  

60 wt% TME 

40wt% NPG 
Polyol blend 

Temperature (C) 

Strategies to 
optimize Tt  

Polyol	
Blending		 Ion	Intercalation		

Nanoparticle	
Mixing	

H
ea

t 
 F

lo
w

, 
en

d
o

 

Pure TME 

Pure NPG 

0	 20	 40	 60	 80	 100	

(LBNL has preliminary 
experimental results 
supporting all three)

Example of tuning 
of Tt into target 
range by blending.
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 As per published battery research, can optimize both 
Tt and H through manipulating both phases: 

 Extensive prior work for batteries at LBNL.

Side Chains Backbone

(ion insertion 
voltage control)
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Approach & Progress: Thermal Switches

Thermal Switches 

and Regulators

Thermal 

Diodes

Mechanism
Material system 

example
On/off ratio 

Rectification 

Ratio
Refs.

Solid-solid contact Cu-Cu with TIM >100 - 1,000 90 86,111

Paraffin expansion Encapsulated wax 100 - 99

Liquid bridge switch Mercury 200 - 86

Electrostatic gating of kel (Fig. 6) Graphene (T=75 K) 5 - 126

Heat pipe diode H2O - >100 179

Jumping droplets (Fig. 8) H2O 2 150 180,201

Variable conductance heat pipe (Fig. 9) N2 gas and H2O 80 - 189

Gas gap switch (high vacuum, low T) H2 >500 - 190

Electrowetting H2O on dielectric 2.5 - 15 - 194,195

Electrical suppression of Leidenfrost Isopropyl alcohol 20 - 198

VO2 emissivity across transition (Fig. 11) VO2 2-3 2 256

Electrochromic (Fig. 12) WO3 2-10 - 257

Liquid crystal regulators Liquid crystals 2-5 - 268,269

Near field (<200 nm gaps, UHV) Au-Au surfaces >100 - 280
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Wehmeyer, ... Dames: "Thermal diodes, regulators, & switches: Physical mechanisms and potential applications"  
Applied Physics Reviews (2017).   ~30 pages, 300 refs.  
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Approach & Progress: Thermal Switches

Building-Specific Requirements 

(Use-case dependent.  All to be refined through iterative 

feedback with systems analysis.)

 Switch ratio 𝑟 =
𝑅𝑜𝑓𝑓

𝑅𝑜𝑛
≥ 10.

 Large 𝑅𝑜𝑓𝑓.  

 Switching T around 20 - 30 C

 Voltage-controlled (integration, smart grid)

 Cyclability: 100s to 1000s of cycles.

 Thickness (if retrofit): ~1" or less. 

 Best approach: Contact / Non-Contact
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Approach & Progress: Thermal Switches

Interface

Compressed
Spring

Shape Memory Alloy (SMA) Wire

Battery

Gap Open: 
Roff

Gap Closed: 
Ron
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Cycle Number

Switch Ratio (vacuum) 
 2020:1 

(a,b) Recent Work (Battery Application).

Switch Ratio: ~2000:1 in vacuum, 

~20:1 in air (1000 cycles). 

[Hao, ... Dames, “Efficient thermal management of Li-ion batteries with a passive interfacial thermal 

regulator based on a shape memory alloy” Nature Energy (2018)]

This Project:

We are pursuing 3 different concepts (all 

voltage-controlled, contact/non-contact):

 SMA based

 Ion insertion (adapt battery technology)

 Electroactive polymer (New team member: 

Arun Majumdar, Stanford)
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Approach & Progress: High-Throughput Metrology

Current SOA (Guarded Hot Plate) Project Goals Improvement Ratio

Sample Volume Volume = 40 mL
(~100 mm dia.  x 5 mm thick)

Volume = 0.02 mL
(~5 mm dia. x 1 mm thick)

> 1000 : 1

Throughput ~1 sample per 4 hrs ~20 samples per 20 mins > 100 : 1
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Accuracy

Transient 
Hot Disk

Guarded Hot 
Plate

Proposed

Context: Thermal Metrology for Insulation
(low-k, porous) 

Concept: All-optical heating and thermometry

 Enables “virtual” hot disk, 3, etc. 

Will also develop new heating shapes for 
improved sensitivity, e.g. for directional 
properties.

Typical sample size

5 mm dia. x 1 mm thick
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Approach & Progress: Multiscale Modeling

Prototype 
demo. & 

validation

Utility-scale 
aggregations

Materials

Buildings

Building subsystems 
(e.g., HVAC, envelope)

Composites and 
metamaterials

Devices
(e.g., switch, storage)

Campuses and 
districts

Nanometers

Gigawatts

NREL

LBNL

For each 
use case Down-

select
most 

compelling 
use case

e.g. 
case1=envelope integrated

case2=equipment integr. storage

case3=standalone storage

... 
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Impact

• Enables flexible and dispatchable thermal storage by expanding traditional 

thermal storage R&D beyond energy density optimization to include tunability and 

thermal switching. 

• Applications (use cases) include dedicated thermal storage, equipment integrated 

thermal storage, and building envelope integration. 

– Preliminary calculations for envelope integration indicate potential energy savings in 

the range of 5x (thermal switches) to 7x (tunable PCM).  

• Develops an integrated platform of materials science, measurement science, 

and integration science for thermal storage R&D: 

– Technical: Thermal energy storage and control materials optimized for 

integration at the building scale.

– Core National Lab Competencies: Capabilities accessible to the private 

sector for discovery, integration, and characterization of next generation 

thermal energy control and storage materials.

– Workforce development: Partnerships with UC Berkeley, Stanford, and 

Georgia Tech enable a next generation of multi-discipline building scientists.
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Stakeholder Engagement

• Project is early stage.  First postdocs arrived in Dec. 

2018 and Jan. 2019.

• Team has extensive range of expertise, from 

nanometers to GW. Includes NREL integration science 

experts at the building, district, and utility scale.

• Assumptions will be validated later in the project with 

external stakeholders to ensure we are on the right 

track. 

• Plan to engage the broader scientific community 

through non-traditional buildings conferences like 

Materials Research Society (MRS). 
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Thank You

Ravi Prasher

LBNL / UC Berkeley

rsprasher@lbl.gov 

Roderick Jackson

NREL

Roderick.Jackson@nrel.gov 

Chris Dames

LBNL / UC Berkeley

cdames@berkeley.edu




