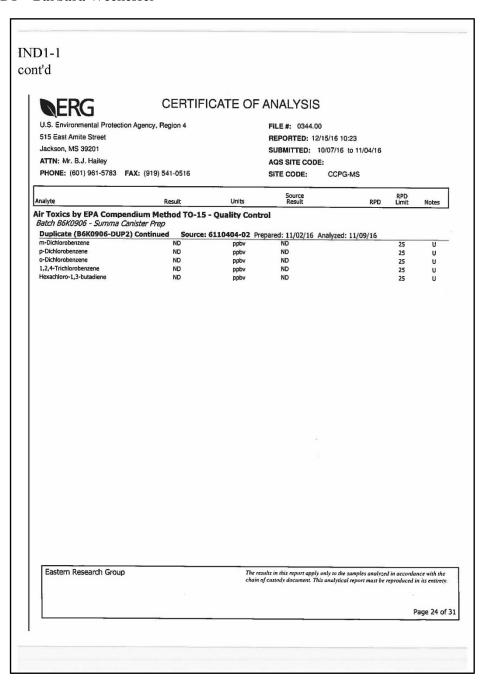
IND1 – Barbara Weckesser

U.S. Environmental Protecti 515 East Amite Street Jackson, MS 39201 ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 Analyte Air Toxics by EPA Compe Batch 86K0906 - Summa C Duplicate (86K0906-DUP	FAX: (919) 541-0516		FILE #: 0344.00 REPORTED: 12/15/1	§ 10:23		
515 East Amite Street Jackson, MS 39201 ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 Analyte Air Toxics by EPA Compe Batch B6K0906 - Summa C	FAX: (919) 541-0516			3 10:23		
ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 Analyte Air Toxics by EPA Compe Batch B6K0906 - Summa C	70					
PHONE: (601) 961-5783 Analyte Air Toxics by EPA Compe Batch B6K0906 - Summa C	70		SUBMITTED: 10/07.	/16 to 11/04/16		
Analyte Air Toxics by EPA Compe	70		AQS SITE CODE:			
Air Toxics by EPA Compe Batch B6K0906 - Summa C	70		SITE CODE: CO	CPG-MS		
Batch B6K0906 - Summa C	Result	Units	Source Result	RPD	RPD Limit	Notes
		- Quality Cont	rol			
		6110404 01 D	11/02/1C A			
1,1,2-Trichloroethane	ND ND	ppbv	epared: 11/02/16 Analy: ND	rea: 11/09/16	25	U
Toluene	1.85	ppbv	2.06	11.0	25	U
Dibromochloromethane 1,2-Dibromoethane	ND	ppbv	ND		25	U
n-Octane	ND 0.071	ppbv ppbv	ND 0.09	21.5	25 25	U
Tetrachloroethylene	ND	ppbv	ND	21.5	25	U
Chlorobenzene	ND	ppbv	ND		25	ū
Ethylbenzene	0.348	ppbv	0.40	13.2	25	
m,p-Xylene Bromoform	1.38 ND	ppbv	1.55 ND	11.4	25	- 11
Styrene	ND	ppbv	ND		25 25	U
1,1,2,2-Tetrachloroethane	ND	ppbv	ND		25	Ü
o-Xylene	0.462	ppbv	0.51	10.5	25	
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	0.388 0.833	ppbv	0.44 0.93	12.6	25 25	
m-Dichlorobenzene	ND	ppbv ppbv	ND	11.1	25	U
p-Dichlorobenzene	ND	ppbv	ND		25	Ü
o-Dichlorobenzene	ND	ppbv	ND		25	U
1,2,4-Trichlorobenzene Hexachloro-1,3-butadiene	ND ND	ppbv	ND ND		25	U
Duplicate (B6K0906-DUP		ppbv 6110404 07 0-			25	U
Acetylene	0.157	ppbv	epared: 11/02/16 Analy: 0.18	zea: 11/09/16 13.2	25	
Propylene	2.28	ppbv	2.60	13.5	25	
Dichlorodifluoromethane	0.394	ppbv	0.45	13.7	25	
Chloromethane Dichlorotetrafluoroethane	0.430 ND	ppbv	0.50	14.3	25	
Vinyl chloride	ND ND	ppbv ppbv	ND		25 25	U
1,3-Butadiene	ND	ppbv	ND		25 25	U
Bromomethane	ND	ppbv	ND		25	Ü
Chloroethane Acetonitrile	0.039	ppbv	0.04	5.22	25	
Acetonitrile Acrolein	0.088 0.446	ppbv ppbv	0.10 0.52	14.8 15.1	25 25	
Trichlorofluoromethane	0.216	ppbv	0.25	14.6	25	
Acrylonitrile	ND	ppbv	ND		25	U
1,1-Dichloroethene Dichloromethane	ND 0.061	ppbv	ND 0.00	227	25	U
Carbon Disulfide	0.061 ND	ppbv ppbv	0.08	27.3	25 25	U
oor born broading	NO	ppov	0.02		25	U
Eastern Research Group		The re chain	sults in this report apply only to of custody document. This anal	the samples analyzed ytical report must be r	in accorda	ince with the in its entirety.


L-44

IND1 – Barbara Weckesser

U.S. Environmental Protection Age 515 East Amite Street Jackson, MS 39201 ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: Analyte Air Toxics by EPA Compendius Batch 86K0906 - Summa Canistes Duplicate (86K0906-DUP2) Con Trichlororithoroethylene 1,1-10chloroethylene 1,1-10chloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethylene 1,1-1-Trichloroform Ethyl tert-Butyl Ether 1,1-1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane Benzene	Result Method TO-15 or Prep ntinued O.062 ND ND ND ND ND ND ND ND ND N	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	Source Result rol epared: 11/02/16 Analyz 0.07 ND ND	216 to 11/04/16 CPG-MS RPD	RPD Limit	Notes
515 East Amite Street Jackson, MS 39201 ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: Analyte Air Toxics by EPA Compendium Batch 86K0906 - Summa Caniste Duplicate (B6K0906-DUP2) Col Trichiorotifiluoroethane tans-1,2-Dichioroethylene 1,1-Dichioroethylene dis-1,2-Dichioroethylene Bromochloromethane dis-1,2-Dichioroethylene Bromochloromethane thyl tert-Butyl Ether Chioroform Ethyl tert-Butyl Ether 1,2-Dichioroethane 1,1,1-Trichioroethane 1,1,1-Trichioroethane 1,1,1-Trichioroethane	Result Method TO-15 or Prep ntinued O.062 ND ND ND ND ND ND ND ND ND N	5110404-02 Pr ppbv ppbv ppbv ppbv ppbv ppbv	REPORTED: 12/15/16 SUBMITTED: 10/07/ AQS SITE CODE: SITE CODE: CC Source Result rol epared: 11/02/16 Analyz ND ND	RPD Red: 11/09/16	RPD Limit	Notes
ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: Analyte Air Toxics by EPA Compendius Batch B6K0906 - Summa Caniste Duplicate (66K0906-DUP2) Col Trichlorotrifluoroethane trans-1,2-Dichloroethylene 1,1-Dichloroethane Methyl tert-Butyl Ether Chloroprene ds-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane	Result m Method TO-15 or Prep ntinued O.062 ND	5110404-02 Pr ppbv ppbv ppbv ppbv ppbv ppbv	SUBMITTED: 10/07/ AQS SITE CODE: SITE CODE: CC Source Result rol epared: 11/02/16 Analyz 0.07 ND ND	RPD Red: 11/09/16	RPD Limit	Notes
PHONE: (601) 961-5783 FAX: Analyte Air Toxics by EPA Compendius Batch 86K0906 - Summa Caniste Duplicate (86K0906-DUP2) Col Trichlorotifluoroethane 1.1-Dichloroethane Methyl tert-Butyl Ether Chloroprene ds-1,2-Dichloroethylene Bromochloromethane Chlorofrom Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane	Result m Method TO-15 or Prep ntinued O.062 ND	5110404-02 Pr ppbv ppbv ppbv ppbv ppbv ppbv	AQS SITE CODE: SITE CODE: CC Source Result rol epared: 11/02/16 Analyz 0.07 ND ND	RPD Red: 11/09/16	RPD Limit	Notes
Analyte Air Toxics by EPA Compendiu Batch 86K0906 - Summa Caniste Duplicate (86K0906-DUP2) Col Trichlorotifluoroethane tans-1,2-Dichloroethylene 1,1-Dichloroethylene dis-1,2-Dichloroethylene Bromochloromethane Chlorofrom Ethyl tert-Butyl Ether Chlorofrom Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	Result m Method TO-15 or Prep ntinued O.062 ND	5110404-02 Pr ppbv ppbv ppbv ppbv ppbv ppbv	Source Result rol epared: 11/02/16 Analyz 0.07 ND ND	RPD	RPD Limit	Notes
Air Toxics by EPA Compendius Batch 86K0906 - Summa Caniste Duplicate (86K0906-DUP2) Col Trichlorotifluoroethylene 1,1-Dichloroethylene 1,1-Dichloroethylene ds-1,2-Dichloroethylene Bromochloromethane Chlorofrom Ethyl tert-Butyl Ether 1,2-Dichloroethylene Bromochloromethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane	m Method TO-15 - er Prep ntinued Source: 0 0.062 ND ND ND ND ND ND ND 0.036	5110404-02 Pr ppbv ppbv ppbv ppbv ppbv ppbv	Result rol repared: 11/02/16 Analyz 0.07 ND ND ND	red: 11/09/16	RPD Limit	Notes
Batch 86K0906 - Summa Caniste Duplicate (B6K0906-DUP2) Cor Trichlorotriburoethane trans-1,2-Dichloroethylene 1,1-Dichloroethane Methyl tert-Butyl Ether Chloroperen dis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichlorotthane 1,1,1-Trichloroethane	er Prep 10.062 ND	ppbv ppbv ppbv ppbv ppbv ppbv ppbv	repared: 11/02/16 Analyz 0.07 ND ND	red: 11/09/16		
Duplicate (B6K0906-DUP2) Col Trichiorotrifluoroethane trans-1,2-Dichloroethylene 1,1-Dichloroethane Methyl tert-Butyl Ether Chloroperne cis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	0.062 ND ND ND ND ND ND ND ND	ppbv ppbv ppbv ppbv ppbv	0.07 ND ND	red: 11/09/16 15.8		
Trichlorotrifluorothane trans-1,2-Dichloroethylene 1,1-Dichloroethane Methyl tert-Butyl Ether Chloroperne cis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	0.062 ND ND ND ND ND ND	ppbv ppbv ppbv ppbv ppbv	0.07 ND ND	15.8		
1,1-Dichloroethane Methyl tert-Butyl Ether Chloropene cis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND ND	ppbv ppbv ppbv ppbv	ND ND		25	
Methyl tert-Butyl Ether Chloroprene dis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND ND 0.036	ppbv ppbv			25	U
Chloroprene cis-1,2-Dichloroethylene Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	ND ND 0.036	ppbv	ND		25	U
Bromochloromethane Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane	0.036		ND		25 25	U
Chloroform Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane		ppbv	ND		25	Ü
Ethyl tert-Butyl Ether 1,2-Dichloroethane 1,1,1-Trichloroethane		ppbv	0.04	17.0	25	
1,1,1-Trichloroethane	0.019 ND	ppbv	ND	46.3	25 25	υ
	0.014	ppbv	0.02	45.3	25	٠
	ND	ppbv	ND		25	U
Carbon Tetrachloride	0.533	ppbv	0.65 0.11	19.8 21.7	25 25	
tert-Amyl Methyl Ether	ND	ppbv	ND	21.7	25	U
1,2-Dichloropropane	ND	ppbv	ND		25	U
Ethyl Acrylate Bromodichloromethane	ND ND	ppbv ppbv	ND ND		25 25	U
Trichloroethylene	ND	ppbv	ND		25	U II
Methyl Methacrylate	ND	ppbv	ND		25	Ū
cis-1,3-Dichloropropene Methyl Isobutyl Ketone	ND 0.033	ppbv	ND 0.04		25	U
trans-1,3-Dichloropropene	ND	ppbv ppbv	ND	27.1	25 25	U
1,1,2-Trichloroethane	ND	ppbv	ND		25	Ü
Toluene	1.85	ppbv	2.02	8.64	25	
Dibromochloromethane 1,2-Dibromoethane	ND ND	ppbv	ND ND		25	U
n-Octane	0.077	ppbv	0.09	13.1	25 25	U
Tetrachloroethylene	ND	ppbv	ND	13.1	25	U
Chlorobenzene	ND	ppbv	ND		25	Ü
Ethylbenzene m,p-Xylene	0.376 1.48	ppbv	0.41 1.59	8.55	25	
Bromaform	ND	ppbv ppbv	ND 1.39	7.24	25 25	u
Styrene	ND	ppbv	ND		25	Ü
1,1,2,2-Tetrachloroethane o-Xvlene	ND 0.400	ppbv	ND		25	U
o-xylene 1,3,5-Trimethylbenzene	0.490 0.406	ppbv ppbv	0.53 0.44	8.19 8.31	25 25	
1,2,4-Trimethylbenzene	0.884	ppbv	0.95	7.11	25	
Eastern Research Group	7-W	The re	sults in this report apply only to of custody document. This anal	the samples analyzed	in accorda	nce with the

L-45

IND1 – Barbara Weckesser

IND1 – Barbara Weckesser

U.S. Environmental Protection Agency, Region 4		o i	MALTOIS	CALEO	CERTIFI	DERG
STEE East Amite Street SUBMITTED: 12/15/16 10:23 Jackson, MS 39201 SUBMITTED: 10/07/16 to 11/04/16 ATTN: Mr. B.J. Hailey FRONE: (601) 961-5783 FAX: (919) 541-0516 SITE CODE: CCPG-MS		10	EU E # . 0244.0		sency Region 4	
Jackson, MS 39201					juney, riegion 4	
ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: (919) 541-0516 Analyte Result Units Who Difference Limit (%) Air Toxics by EPA Compendium Method TO-15 - Quality Control Sequence 1610025 Calibration Check (1610025-CCV1) Acetylene 2.00 ppbv -26.2 30.00 Chloromethane 2.00 Chloromethane 1.86 ppbv -26.0 30.00 Chloromethane 1.86 ppbv -26.0 30.00 Chloromethane 1.86 ppbv -26.0 30.00 Chloromethane 1.86 ppbv -22.8 30.00 Chloromethane 1.95 ppbv -17.5 30.00 Bromomethane 1.99 ppbv -22.8 30.00 Chloromethane 1.99 ppbv -22.2 30.00 Chloromethane 1.99 ppbv -23.2 30.00 Acrolain 2.29 ppbv -4.5 30.00 Acrolain 2.29 ppbv -1.6 30.00 Acrolain 2.21 ppbv -1.6 30.00 Acrolain 2.22 30.00 Acrolain 2.23 ppbv -1.1 Acetylene Analyzed: 10/12/16 Acetylene 1.1-10/12/10/10/10/10/10/10/10/10/10/10/10/10/10/						
PHONE: (601) 961-5783 FAX: (919) 541-0516						
Air Toxics by EPA Compendium Method TO-15 - Quality Control Sequence 1610025 Calibration Check (1610025-CCV1) Propylene 1.83 ppbv -26.2 30.00 propylene 2.00 ppbv -18.2 30.00 Dichlorodifluoromethane 2.00 ppbv -20.1 30.00 Chloromethane 1.86 ppbv -26.0 30.00 Dichlorotetrafluoroethane 2.11 ppbv -13.4 30.00 Viryl chloride 1.95 ppbv -22.8 30.00 1,3-Butadiene 2.06 ppbv -17.5 30.00 Trichlorotethane 1.96 ppbv -23.2 30.00 Acetonibrile 1.90 ppbv -23.2 30.00 Acctonibrile 1.90 ppbv -23.2 30.00 Acrolein 2.29 ppbv -4.5 30.00 Acrolein 2.29 ppbv -4.5 30.00 Acrylonibrile 2.30 ppbv -9.3 30.00 Acrylonibrile 2.30 ppbv -9.3 30.00 Acrylonibrile 2.30 ppbv -10.6 30.00 Dichloroethane 2.11 ppbv -11.5 30.00 Acrylonibrile 2.25 ppbv -10.6 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Acrylonibrile 2.99 ppbv -15.5 30.00 Acrylonibrile 2.99 ppbv -15.5 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Carbon Disulfide 1.95 ppbv -2.3 30.00 Chloroprene 2.40 ppbv -2.3 30.00 Chloroprene 2.41 ppbv -2.5 30.00 Chloroprene 2.43 ppbv -7.6 30.00 Chloroprene 2.44 ppbv -7.6 30.00 Chloroprene 2.45 ppbv -7.6 30.00 Chloroform 2.38 ppbv -7.6 30.00 Chloroform 2.38 ppbv -7.6 30.00 Chloroform 2.38 ppbv -7.5 30.00 Chloroform 2.38 ppbv -7.5 30.00 Chloroform 2.38 ppbv -7.5 30.00 Chloroform 2.38 ppbv -1.1 30.00 Chloroform 2.39 ppbv -1.1 30.00 Chloroform 2.31 ppbv -1.2 4 30.00 Chloroform 2.32 ppbv -1.3 30.00 Chloroform 2.33 ppbv -1.1 30.00 Chloroform 2.34 ppbv -1.5 30.00 Chloroform 2.35 ppbv -1.1 30.00 Chloroform 2.36 ppbv -1.1 30.00 Chloroform 2.37 ppbv -1.1 30.00 Chloroform 2.38 ppbv -1.1 30.00 Chloroform 2.39 ppbv -1.1 30.00 Chloroform 2.30					(919) 541-0516	
Air Toxics by EPA Compendium Method TO-15 - Quality Control Sequence 1610025	Notes	Limit (%)	Difference	Units	Result	nalyte
Prepared & Analyzed: 10/12/16				Quality Co	ım Method TO-15	ir Toxics by EPA Compendiu
Acetylene		10/12/16	rod & Anabasa		CV1)	* PART DEPARTMENT
Propylene			-26.2	ppbv		
Chloromethane 1.86					2.00	
Dichlorotetrafluoroethane		30.00		ppbv		
Vinyl chloride 1.95 ppbv -22.8 30.00 1,3-Butadiene 2.06 ppbv -17.5 30.00 1,3-Butadiene 2.06 ppbv -22.9 30.00 Portugation 1.96 ppbv -23.2 30.00 Accondinite 1.90 ppbv -23.2 30.00 Acrolein 2.29 ppbv -4.5 30.00 Acroleinin 2.29 ppbv -19.3 30.00 Acroleinin 2.29 ppbv -19.3 30.00 Acroleinin 2.29 ppbv -19.3 30.00 Acroleinine 2.01 ppbv -19.3 30.00 Acroleinine 2.12 ppbv -14.5 30.00 Acroleinine 2.12 ppbv -14.5 30.00 Dichloroethene 2.12 ppbv -10.6 30.00 Carbon Disuffide 1.95 ppbv -22.0 30.00 Irichloroethylene 2.09 ppbv -2.3		30.00				
1,3-Butadiene 2.06 ppbv 17.5 30.00						
Bromomethane 1.99 ppbv -20.9 30.00						
Chloroethane						
Acetonitrile 1,90 ppbv -23.2 30.00 Acrolein 2.29 ppbv -4.5 30.00 Acrolein 2.29 ppbv -19.3 30.00 Acryloribride 2.30 ppbv -19.3 30.00 Acryloribride 2.12 ppbv -14.5 30.00 L/1-Dichloroethene 2.12 ppbv -10.6 30.00 Carbon Disulfide 1.95 ppbv -10.6 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Trichlorotrifluoroethane 2.09 ppbv -22.3 30.00 1,1-Dichloroethylene 2.40 ppbv -2.3 30.00 1,1-Dichloroethylene 2.19 ppbv -12.6 30.00 Methyl tetr-Butyl Ether 2.00 ppbv -2.9 30.00 Cis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00 Gis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00 Gis-1,2-Dic						
Acrolein 2.29 ppbv -4.5 30.00 Trichlorofluoromethane 2.01 ppbv -19.3 30.00 Acrylonitrile 2.30 ppbv -9.3 30.00 1,1-Dichloroethene 2.12 ppbv -14.5 30.00 Dichloromethane 2.25 ppbv -10.6 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Trichlorotrifluoroethane 2.09 ppbv -15.5 30.00 trans-1,2-Dichloroethylene 2.40 ppbv -2.3 30.00 trans-1,2-Dichloroethylene 2.19 ppbv -12.6 30.00 trans-1,2-Dichloroethylene 2.19 ppbv -20.7 30.00 Chloroprene 2.43 ppbv -2.9 30.00 Chloroprene 2.33 ppbv -7.6 30.00 Bromodhloromethane 2.24 ppbv -10.2 30.00 Chloroform 2.38 ppbv -7.1 30.00 Ethyl t		2000000				Acetonitrile
Trichlorofloromethane 2,01 ppbv -19.3 30.00 Acrylonibrile 2,30 ppbv -9.3 30.00 1,1-Dichloroethene 2,12 ppbv -14.5 30.00 Dichloromethane 2,25 ppbv -10.6 30.00 Carbon Disulfide 1,95 ppbv -12.5 30.00 Trichloroethane 2.09 ppbv -15.5 30.00 trans-1,2-Dichloroethylene 2.40 ppbv -2.3 30.00 1,1-Dichloroethane 2.19 ppbv -2.3 30.00 Wethyl tert-Butyl Ether 2.00 ppbv -20.7 30.00 Chloroprene 2.43 ppbv -2.9 30.00 Chloroprene 2.43 ppbv -7.6 30.00 Seromodiloromethylene 2.33 ppbv -7.6 30.00 Chloroform 2.38 ppbv -7.1 30.00 Chloroform 2.33 ppbv -7.1 30.00 Ethyl tert-Butyl Ether <td></td> <td></td> <td>-4.5</td> <td></td> <td>2.29</td> <td>Acrolein</td>			-4.5		2.29	Acrolein
1,1-Dichloroethene 2.12 ppbv -14.5 30.00 Dichloromethane 2.25 ppbv -10.6 30.00 Carbon Disulfide 1.95 ppbv -22.0 30.00 Trichlorotrifluoroethane 2.09 ppbv -15.5 30.00 trans-1,2-Dichloroethylene 2.40 ppbv -2.3 30.00 1,1-Dichloroethane 2.19 ppbv -12.6 30.00 Methyl tert-Buryl Ether 2.00 ppbv -20.7 30.00 Chlorogrene 2.43 ppbv -2.9 30.00 dis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00 Group Texture 2.24 ppbv -10.2 30.00 Chloroform 2.38 ppbv -7.1 30.00 Ethyl text-Butyl Ether 2.31 ppbv -12.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 1,1,1-Trichloroethane 1.90 ppbv -25.3 30.00				ppbv		
Dichloromethane 2.25 ppbv -10.6 30.00						
Carbon Disulfide 1.95 ppbb -22.0 30.00 Trichlorotrifluoroethane 2.09 ppbb -15.5 30.00 Trichlorotrifluoroethylene 2.40 ppbb -2.3 30.00 1,1-Dichloroethane 2.19 ppbb -12.6 30.00 Methyl tert-Butyl Ether 2.00 ppbb -20.7 30.00 Chloropene 2.43 ppbb -2.9 30.00 Chloropene 2.33 ppbb -7.6 30.00 Bromochloromethane 2.24 ppbb -10.2 30.00 Chloroform 2.38 ppbb -7.1 30.00 Chloroform 2.31 ppbb -12.4 30.00 1,2-Dichloroethane 2.41 ppbb -4.5 30.00 1,1,1-Trichloroethane 1.90 ppbb -8.3 30.00 Benzene 2.31 ppbb -8.3 30.00 Benzene 2.31 ppbb -13.3 30.00 tert-Amyl Methyl Ether						
Trichlorotrifluoroethane 2.09 ppbv -1.5.5 30.00 trans-1,2-Dichlorotrophylene 2.40 ppbv -2.3 30.00 trans-1,2-Dichloroethylene 2.19 ppbv -12.6 30.00 ppbv -2.07 30.00 ppbv -20.7 30.00 ppbv -20.7 30.00 ppbv -20.7 30.00 ppbv -20.7 30.00 ppbv -2.0 ppbv -2.9 30.00 ppbv -2.9 ppbv -1.0 ppbv -2.9 30.00 ppbv -2.9 ppbv -1.0 ppbv -2.9 30.00 ppbv -2.9 ppbv -1.0 ppbv -2.9 ppbv -1.0 ppbv -2.9 ppbv -1.0 ppbv -2.0 ppbv -						
trans-1,2-Dichloroethylene 2,40 ppbv -2.3 30.00 1,1-Dichloroethylene 2,19 ppbv -12.6 30.00 Methyl tert-Butyl Ether 2,00 ppbv -20.7 30.00 Chloroprene 2,43 ppbv -2.9 30.00 cis-1,2-Dichloroethylene 2,33 ppbv -7.6 30.00 Bromodiloromethane 2,24 ppbv -10.2 30.00 Chloroform 2,38 ppbv -7.1 30.00 Ethyl tert-Butyl Ether 2,31 ppbv -12.4 30.00 L/2-Dichloroethane 2,41 ppbv -4.5 30.00 L/1,1-Trichloroethane 1,90 ppbv -25.3 30.00 Benzene 2,31 ppbv -8.3 30.00 Carbon Tetrachloride 2,15 ppbv -13.3 30.00 Carbon Tetrachloride 2,15 ppbv -11.3 30.00 Ltr-Lynkl Methyl Ether 2,36 ppbv -9.3 30.00						
1,1-Dichloroethane 2.19 ppbv -12.6 30.00 Methyl tert-Butyl Ether 2.00 ppbv -20.7 30.00 Chloroprene 2.43 ppbv -2.9 30.00 cis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00 Bromochloromethane 2.24 ppbv -10.2 30.00 Chloroform 2.38 ppbv -7.1 30.00 Liyl-Tabutyl Ether 2.31 ppbv -12.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 1,1-1-Trichloroethane 1.90 ppbv -25.3 30.00 Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -9.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 bertyl Acrylate 2.08 ppbv -16.8 30.00						
Methyl tert-Butyl Ether 2.00 ppbv -20.7 30.00 Chloroprene 2.43 ppbv -2.9 30.00 sis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00 Bromochloromethane 2.24 ppbv -10.2 30.00 Chloroform 2.38 ppbv -7.1 30.00 Ethyl tert-Butyl Ether 2.31 ppbv -12.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 L1,1-Trichloroethane 1.90 ppbv -8.3 30.00 Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -9.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 bringly -9.3 30.00 -9.3 30.00 bringly -9.3 30.00 -9.3 -9.3 -9.3 -9.3 -						
Cis-1,2-Dichloroethylene 2.33 ppbv -7.6 30.00			-20.7		2.00	
Bromochloromethane 2.24 ppbv -10.2 30.00 Chloroform 2.38 ppbv -7.1 30.00 Lithyl tert-Butyl Ether 2.31 ppbv -12.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 L,1,1-Trichloroethane 1.90 ppbv -25.3 30.00 Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00			-2.9	ppbv	2.43	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chloroform 2.38 ppbv -7.1 30.00 Ethyl text-Butyl Ether 2.31 ppbv -12.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 1,1,1-Trichloroethane 1.90 ppbv -25.3 30.00 Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Armyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2,32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00		30.00				
Ethyl tert-Butyl Ether 2.31 ppbv -1.2.4 30.00 1,2-Dichloroethane 2.41 ppbv -4.5 30.00 1,1-Lirichloroethane 1.90 ppbv -2.5.3 30.00 2,1-Lirichloroethane 2.31 ppbv -8.3 30.00 2,1-Lirichloroethane 2.31 ppbv -8.3 30.00 2,1-Lirichloroethane 2.15 ppbv -13.3 30.00 2,1-Lirichloroethane 2.36 ppbv -11.3 30.00 2,1-Lirichloroethane 2.32 ppbv -9.3 30.00 2,1-Lirichloroethane 2.32 ppbv -9.3 30.00 3,1-Lirichloroethane 2.08 ppbv -18.4 30.00 3,00 3,00 3,00 3,00 3,00 3,00 3,0						
1,2-Dichloroethane 2.41 ppbv 4.5 30.00 1,1,1-Trichloroethane 1.90 ppbv -25.3 30.00 Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00						
1,1,1-Trichloroethane 1,90 ppbv -25.3 30.00 Benzene 2,31 ppbv -8.3 30.00 Carbon Tetrachloride 2,15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2,36 ppbv -11.3 30.00 1,2-Dichloropropane 2,32 ppbv -9.3 30.00 Ethyl Acrylate 2,08 ppbv -18.4 30.00 Bromodichloromethane 2,13 ppbv -16.8 30.00						
Benzene 2.31 ppbv -8.3 30.00 Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00						
Carbon Tetrachloride 2.15 ppbv -13.3 30.00 tert-Amyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00						
tert-Amyl Methyl Ether 2.36 ppbv -11.3 30.00 1,2-Dichloropropane 2.32 ppbv -9.3 30.00 Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00						Carbon Tetrachloride
Ethyl Acrylate 2.08 ppbv -18.4 30.00 Bromodichloromethane 2.13 ppbv -16.8 30.00						
Bromodichloromethane 2.13 ppbv -16.8 30.00		30.00				
					2.00	
Trichloroethylene 2.16 ppbv -15.6 30.00						
30,00		30,00	1510			
Eastern Research Group The results in this report apply only to the samples analyzed chain of custody document. This analytical report must be re-	d in accordance with the reproduced in its entirety	only to the samples analyzed in a is analytical report must be repre	in this report apply istody document. Th	The		Eastern Research Group
ii ii	Page 25 of					15

L-47

IND1 – Barbara Weckesser

nt'd					
ERG	CERTIFI	CATE O	F ANALYS	S	
U.S. Environmental Protection A	nency Region 4		FILE #: 0344	1.00	
515 East Amite Street	geney, riegion 4			12/15/16 10:23	
Jackson, MS 39201				10/07/16 to 11/04/16	
ATTN: Mr. B.J. Hailey			AQS SITE CO		•
PHONE: (601) 961-5783 FAX	: (919) 541-0516		SITE CODE:	CCPG-MS	
Analyte	Result	Units	% Difference	Limit (%)	Notes
Air Toxics by EPA Compendi	um Method TO-15	· Quality Co	entrol		
Sequence 1610025					
Calibration Check (1610025- Methyl Methacrylate	CCV1) Continued 2.08		Prepared & Analyze		
cis-1,3-Dichloropropene	2.08	ppbv ppbv	-19.5 5.7	30.00 30.00	
Methyl Isobutyl Ketone	2.15	ppbv	-15.9	30.00	
trans-1,3-Dichloropropene	2.61	ppbv	4.2	30.00	
1,1,2-Trichloroethane	2.47	ppbv	-2.8	30.00	
Toluene Dibromochloromethane	2.48	ppbv	-0.6	30.00	
1,2-Dibromoethane	2.34 2.58	ppbv	-8.0 2.0	30.00	
n-Octane	2.30	ppbv ppbv	-8.7	30.00 30.00	
Tetrachloroethylene	2.32	ppbv	-7.9	30.00	
Chlorobenzene	2.49	ppbv	-0.3	30.00	
Ethylbenzene	2.60	ppbv	2.5	30.00	
m,p-Xylene Bromoform	5.13	ppbv	1.6	30.00	
Styrene	2.11 2.64	ppbv	-16.8 4.8	30.00	
1,1,2,2-Tetrachloroethane	2.78	ppbv	9.4	30.00 30.00	
o-Xylene	2.58	ppbv	4.3	30.00	
1,3,5-Trimethylbenzene	2.46	ppbv	-2.3	30.00	
1,2,4-Trimethylbenzene	2.35	ppbv	-1.2	30.00	
m-Dichlorobenzene	2.31	ppbv	-3.4	30.00	
p-Dichlorobenzene	2.63	ppbv	1.2	30.00	
o-Dichlorobenzene 1,2,4-Trichlorobenzene	2.29 2.97	ppbv	-8.5 19.8	30.00	
Hexachloro-1,3-butadiene	2.42	ppbv ppbv	-3.1	30.00 30.00	
Sequence 1611007	2.72	ppov	J.1	30.00	
Calibration Check (1611007-0	CCV1)		Prepared & Analyze	d: 11/03/16	
Acetylene	2.41	ppbv	-2.9	30.00	-
Propylene	2.46	ppbv	0.4	30.00	
Dichlorodifluoromethane	2.45	ppbv	-1.8	30.00	
Chloromethane Dichlorotetrafluoroethane	2.45 2.50	ppbv	-2.3	30.00	
Vinyl chloride	2.50	ppbv ppbv	2.6 -4.5	30.00	
1,3-Butadiene	2.48	ppbv	-0.9	30.00 30.00	
Bromomethane	2.34	ppbv	-7.1	30.00	
Eastern Research Group		Th	e results in this report ap ain of custody document.	ply only to the samples analy This analytical report must b	zed in accordance with the be reproduced in its entirety.
					Page 26 of

L-48 INDIVIDUALS

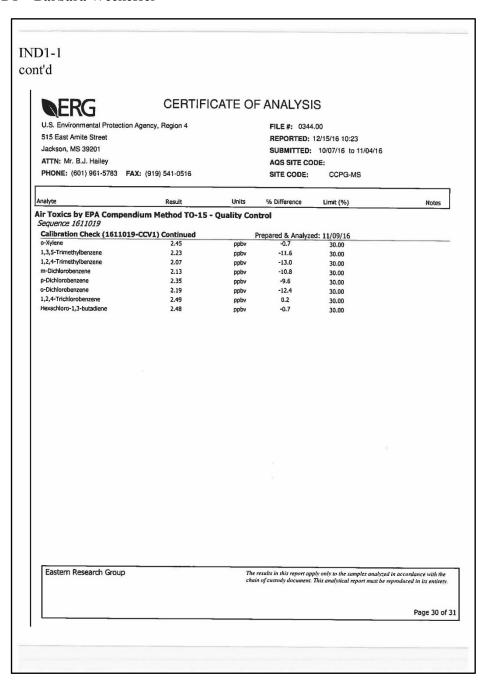
IND1 – Barbara Weckesser

Air Toxics by EPA Compendium Method TO-15 - Qualit Sequence 1611007 Calibration Check (1611007-CCV1) Continued Chloroethane 2,40 2,44 1,71 2,72 2,72 2,72 2,72 2,72 2,72 2,72	REP SUB AQS SITE To the state of the state o	8 Analyzed: 1 5.5.7 8. Analyzed: 1 5.7 8.8 8.3 8.3 8.0 9.6 6.2 4.4 9.6 1.3 1.5 1.5 1.6 1.6 1.6 1.6	0/07/16 to 11/04/16 : : CCPG-MS Limit (%)	Notes
S15 East Amite Street Jackson, MS 39201	REP SUB AQS SITE To the state of the state o	©ORTED: 12// MITTED: 10 S SITE CODE: E CODE: Ference & Analyzed: : 5.7 S.8 S.8 S.9	2/07/16 to 11/04/16 : CCPG-MS Limit (%) 11/03/16 30.00	Notes
Jackson, MS 39201 ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: (919) 541-0516 Analyte Result Lit Toxics by EPA Compendium Method TO-15 - Qualification Check (1611007-CCV1) Continued Calibration Check (1611007-CCV1) Continued Chloroethane 2,40 2,34 7 Trichlorofluoromethane 2,28 7 Acrolein 2,34 7 Trichlorofluoromethane 2,28 7 Dichloromethane 2,93 7 Carbon Disulfide 2,39 7 Trichlorofluoroethane 2,93 7 Carbon Disulfide 2,39 7 Trichlorofluoroethane 2,48 7 Expression 1,1-Dichloroethane 2,47 7 Methyl tert-Butyl Ether 2,43 7 Ethyl tert-Butyl Ether 2,50 8 Chloroform 2,63 8 Ethyl tert-Butyl Ether 2,60 8 Trichloroethane 2,71 8 Ethyl tert-Butyl Ether 2,60 8 Trichloroethane 2,71 8 Ethyl tert-Butyl Ether 2,60 8 Trichloroethane 2,71 8 Ethyl Ether 3,06 8 Trichloroethane 3,0	SUB AQS SITE Prepared opbv	& Analyzed: :5.5.7 8.8 8.3 8.3 8.0 8.6 6.2 4.4 8.6 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	2/07/16 to 11/04/16 : CCPG-MS Limit (%) 11/03/16 30.00	Notes
ATTN: Mr. B.J. Hailey PHONE: (601) 961-5783 FAX: (919) 541-0516 Analyte Result Unit of the control of the cont	AQS SITE Initis % Diff by Control Prepared opbv 3 3 3 3 3 3 3 3 3 3 4 3 5 5 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 Analyzed: 1 5.5.7 8. Analyzed: 1 5.7 8.8 8.3 8.3 8.0 9.6 6.2 4.4 9.6 1.3 1.5 1.5 1.6 1.6 1.6 1.6	: CCPG-MS Limit (%) 11/03/16 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	Notes
Analyte Result University of the Company of the Com	Inits % Diffe ty Control Prepared Opply 3 ppby 5 ppby 5 ppby 5 ppby 6 ppby 6 ppby 6 ppby 6 ppby 6 ppby 7 ppby 9 pp	& Analyzed: : 3.5.7 8.8 2.5 8.3 3.0 9.6 6.6.2 4.4 9.6 1.1 1.5 1.6 6.06 2.4 1.5 5.5	CCPG-MS Limit (%) 11/03/16 30.00	Notes
Air Toxics by EPA Compendium Method TO-15 - Qualit Sequence 1611007 Calibration Check (1611007-CCV1) Continued Chloroethane 2,40 2,40 2,44 2,44 2,44 2,44 2,44 2,44	ty Control Prepared ppbv -1 ppbv -2 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -1	& Analyzed: : 5.8.8 2.5 8.3 8.3 8.0 9.6 6.2 9.6 6.2 9.6 6.2 1.3 1.5 5.1 1.1 7.6 6.06 6.2 2.4 5.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9	11/03/16 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	Notes
Air Toxics by EPA Compendium Method TO-15 - Qualit Sequence 1611007 Calibration Check (1611007-CCV1) Continued Chloroethane 2,40 2,40 2,44 2,44 2,44 2,44 2,44 2,44	ty Control Prepared ppbv -1 ppbv -2 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -1	& Analyzed: : 5.8.8 2.5 8.3 8.3 8.0 9.6 6.2 9.6 6.2 9.6 6.2 1.3 1.5 5.1 1.1 7.6 6.06 6.2 2.4 5.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 5.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.5 9.06 6.2 9.4 6.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9	11/03/16 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	Notes
Sequence 1611007 Calibration Check (1611007-CCV1) Continued Chloroethane 2.40 Accolein 2.34 Trichlorofluoromethane 2.28 Acrylonitrile 2.62 1,1-Dichloroethane 2.72 Dichloromethane 2.93 Carbon Disulfide 2.39 Trichlorotrifluoroethane 2.48 trans-1,2-Dichloroethylene 2.43 1,1-Dichloroethane 2.47 Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 65-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 1,1,1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tetr-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.80 Bromodichloromethane 2.80 <td>Prepared opbv opbv opbv opbv opbv opbv opbv opbv</td> <td>5.7 5.8 2.5 8.3 3.0 9.6 6.6 4.4 9.6 1.3 1.5 1.1,1 7.6 9.06</td> <td>30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00</td> <td></td>	Prepared opbv opbv opbv opbv opbv opbv opbv opbv	5.7 5.8 2.5 8.3 3.0 9.6 6.6 4.4 9.6 1.3 1.5 1.1,1 7.6 9.06	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Chloroethane 2,40 Acceontrile 2,56 Acrolein 2,24 Trichlorofluoromethane 2,28 Acrylonitrile 2,62 1,1-Dichloroethene 2,72 Dichloromethane 2,93 Carbon Disulfide 2,39 Trichlorotifluoroethane 2,43 Trichlorotifluoroethane 2,43 Trichloroethine 2,43 Trichloroethylene 2,43 1,1-Dichloroethylene 2,43 1,1-Dichloroethylene 2,43 1,1-Dichloroethylene 2,59 Cissing 2,20 Chloropene 2,69 Cissing 2,	199bv -199bv -19	5.7 5.8 2.5 8.3 3.0 9.6 6.6 4.4 9.6 1.3 1.5 1.1,1 7.6 9.06	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Acetonitrile 2.56 Acrolein 2.34 Arrolein 2.34 Arrolein 2.28 Arrylonitrile 2.62 Al- 1-Dichloromethane 2.72 Dichloromethane 2.93 Carbon Disuffide 2.39 Trichlorotrifluoroethylene 2.48 trans-1,2-Dichloroethylene 2.43 I,1-Dichloroethylene 2.43 I,1-Dichloroethylene 2.47 Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 Gis-1,2-Dichloroethylene 2.52 Bromochloromethylene 2.52 Bromochloromethylene 2.63 Ethyl tert-Butyl Ether 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.61 I,1-J-Trichloroethylene 2.63 Ethyl tert-Butyl Ether 2.63 Ethyl tert-Butyl Ether 2.61 I,2-Dichloroethane 2.61 I,1-J-Trichloroethane 3.66 Enzene 2.71 Enzene 2.76 Carbon Tetrachloride 3.06 Lert-Amyl Methyl Ether 2.50 I,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.60 Bromodichloromethane 2.60 Bromodichloromethane 2.60 Bromodichloromethane 2.77 Ethyl Acrylate 2.80 Bromodichloromethane 2.60 Bromodichloromethane 2.65 Bromodichloromethane 2.65 Bromodichloromethane 2.75	355bv	2.8 2.5 8.3 8.0 9.6 6.2 4.4 9.6 1.3 1.5 1.1.1	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Acrolein 2.34 Trichlorofluormethane 2.28 Acrylonitrile 2.62 1,1-Dichloroethene 2.77 Dichloromethane 2.93 Carbon Disulfide 2.39 Trichloroethine 2.48 Trichloroethine 2.48 Trinchloroethine 2.43 1,1-Dichloroethine 2.47 Methyl tert-Buryl Ether 2.47 Chloroprene 2.69 Cisi-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Buryl Ether 2.40 1,1-Trichloroethane 2.19 Chloroform 2.63 Ethyl tert-Buryl Ether 2.40 1,1-Dichloroethane 2.19 Chloroform 2.63 Ethyl tert-Buryl Ether 2.40 1,1-Dichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 Etert-Amyl Methyl Ether 2.50 1,2-Dichloropopane 2.75 Ethyl Acrylate 2.80 Bromodiloromethane 2.90 Ethyl Acrylate 2.80 Eromodiloromethane 2.75 Ethyl Acrylate 2.80 Eromodiloromethane 2.75	popby	2.5 8.3 8.0 8.0 6.2 4.4 9.6 1.3 1.5 1.1.1 7.6 0.06	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Acrylonitrile 2.62 1,1-Dichloroethene 2.72 Dichloromethane 2.93 Carbon Disulfide 2.39 Trichlorotrifluoroethane 2.48 1,1-Dichloroethylene 2.43 1,1-Dichloroethylene 2.47 Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 Gis-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 1,1-1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 Letr-Amyl Methyl Ether 2.50 1,2-Dichloroethane 3.06 Letr-Amyl Methyl Ether 2.50 1,2-Dichloroethane 3.06 Letr-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Lethyl Acrylate 2.80 Bromodichloromethane 3.00 Letr-Amyl Methyl Ether 3.00 Letr-Amyl Me		3.0 9.6 6.2 4.4 9.6 1.3 1.5 1.1.1 7.6 6.06 2.4	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
1,1-Dichloroethene 2.72 Dichloromethane 2.93 Carbon Disulfide 2.39 Trichlorotrifluoroethane 2.48 trans-1,2-Dichloroethylene 2.43 1,1-Dichloroethane 2.47 Methyl tert-Buyl Ether 2.24 Chloroprene 2.69 cis-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Buyl Ether 2.40 1,2-Dichloroethane 2.61 1,1,1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tert-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	Spipor	9.6 6.2 4.4 9.6 1.3 1.5 1.1.1 7.6 0.06 2.4	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Dichloromethane 2,93 Carbon Disulfide 2,39 Trichlorortilmoreothane 2,48 trans-1,2-Dichloroethylene 2,43 1,1-Dichloroethane 2,47 Methyl tert-Rutyl Ether 2,24 Chloroprene 2,69 cis-1,2-Dichloroethylene 2,52 Bromochloromethane 2,19 Chloroform 2,63 Ethyl tert-Butyl Ether 2,40 1,2-Dichloroethane 2,61 1,1-Trichloroethane 2,71 Benzene 2,56 Carbon Tetrachloride 3,06 tert-Amyl Methyl Ether 2,50 1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Formodichloromethane 2,56	1	6.2 4.4 9.6 1.3 1.5 1.1,1 7.6 0.06 2.4	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Carbon Disulfide 2.39 Trichlorotrifluoroethane 2.48 trans-1,2-Dichloroethylene 2.43 1,1-Dichloroethane 2.47 Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 cis-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 1,1,1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tetr-Annyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56		4.4 0.6 1.3 1.5 1.1 7.6 0.06 2.4	30.00 30.00 30.00 30.00 30.00 30.00 30.00	
Trichlorotrifluoroethane 2.48 trans-1,2-Dichloroethylene 2.43 1,1-Dichloroethane 2.47 Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 cis-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 1,1,1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tert-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	ppbv -1 ppbv -1 ppbv -1 ppbv -1 ppbv -2 ppbv -2 ppbv -2 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -3 ppbv -3	1.3 1.5 1.1 7.6 0.06 2.4	30.00 30.00 30.00 30.00 30.00 30.00	
1,1-Dichloroethane 2,47 Methyl tert-Butyl Ether 2,24 Chloroprene 2,69 cis-1,2-Dichloroethylene 2,52 Bromochloromethane 2,19 Chloroform 2,63 Ethyl tert-Butyl Ether 2,40 1,2-Dichloroethane 2,61 1,1,1-Trichloroethane 2,71 Benzene 2,56 Carbon Tetrachloride 3,06 tert-Amyl Methyl Ether 2,50 1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Bromodichloromethane 2,56		1.5 1.1 7.6 0.06 2.4	30.00 30.00 30.00 30.00	
Methyl tert-Butyl Ether 2.24 Chloroprene 2.69 cis-1,2-Dichloroethylene 2.52 Bromochloromethane 2.19 Chloroform 2.63 Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 Benzene 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tert-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	-1 opbv -1 opbv -0 opbv -1 opbv -2 opbv -9	11.1 7.6 0.06 2.4	30.00 30.00 30.00	
Chloroprene 2.69 cis-1,2-Dichloropthylene 2.52 promodichloromethylene 2.52 promodile Chloroform 2.63 promodile Chloroform 2.63 promodile Chloroform 2.63 promodile Chloroform 2.63 promodile Chloroform 2.61 promodile Chloropthylene 2.61 promodile Chloropthylene 2.71 promodile Chloropthylene 2.56 promodile Chloropthylene 2.50 promodile Chloropthylene 2.75 promodile Chloropthylene 2.75 promodile Chloropthylene 2.60 promodile Chloropthylene 2.56 promodile C	7 ppbv 7 ppbv -0 ppbv -1 ppbv 2 ppbv -9 ppbv -9 ppbv 3	7.6 0.06 2.4 2.5	30.00 30.00	
cis-1,2-Dichloroethylene 2,52 Bromochloromethane 2,19 Chloroform 2,63 Ethyl tert-Butyl Ether 2,40 1,2-Dichloroethane 2,61 1,1,1-Trichloroethane 2,71 Benzene 2,55 Carbon Tetrachloride 3,06 tert-Amyl Methyl Ether 2,50 1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Bromodichloromethane 2,56	opbv -0 opbv -1 opbv 2 opbv -9 opbv -9	0.06 .2.4 2.5	30.00	
Bromochloromethane 2,19 Chloroform 2,63 Ethyl tert-Butyl Ether 2,40 1,2-Dichloroethane 2,61 1,1,1-Trichloroethane 2,71 Benzene 2,56 Carbon Tetrachloride 3,06 tert-Amyl Methyl Ether 2,50 1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Bromodichloromethane 2,56	opbv -1 opbv 2 opbv -9	2.5		
Ethyl tert-Butyl Ether 2.40 1,2-Dichloroethane 2.61 1,1.1-Trichloroethane 2.71 Element 2.55 Carbon Tetrachloride 3.06 tert-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Elmondichloromethane 2.56 Elmondichloromethane 2.56 Elmondichloromethane 2.56	opbv -9			
1,2-Dichloroethane 2,61 1,1,1-Trichloroethane 2,71 Benzene 2,56 Carbon Tetrachloride 3,06 tetr-Amyl Methyl Ether 2,50 1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Bromodichloromethane 2,56	pbv 3		30.00	
1.1,1-Trichloroethane 2.71 Benzene 2.56 Carbon Tetrachloride 3.06 tert-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	read to	9.1	30.00	
Benzene 2.56 Carbon Tetrachloride 3.06 tetr-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	pbv 6	5.6	30.00 30.00	
Carbon Tetrachloride 3.06 tetr-Amyl Methyl Ether 2.50 1,2-Dichloropropane 2.75 Ethyl Acrylate 2.80 Bromodichloromethane 2.56	Par.	1.5	30.00	
1,2-Dichloropropane 2,75 Ethyl Acrylate 2,80 Bromodichloromethane 2,56		3.4	30.00	
Ethyl Acrylate 2.80 promodichloromethane 2.56 promodichloromethane	•	5.9	30.00	
Bromodichloromethane 2.56		7.3 9.8	30.00	
and the second s	**************************************	0.2	30.00 30.00	
	r	7.4	30.00	
Methyl Methacrylate 2.79	pbv 8	3.2	30.00	
		8.8	30.00	
		7.2 5.8	30.00	
real control of the c		1.2	30.00 30.00	
Toluene 2.33		5.5	30.00	
	•	0.7	30.00	
1,2-Dibromoethane 2.36 p	ipbv -6	5.6	30.00	
Eastern Research Group	The results in the	his report apply of y document. This	nly to the samples analyzed i analytical report must be rep	n accordance with the produced in its entiren

L-49 INDIVIDUALS

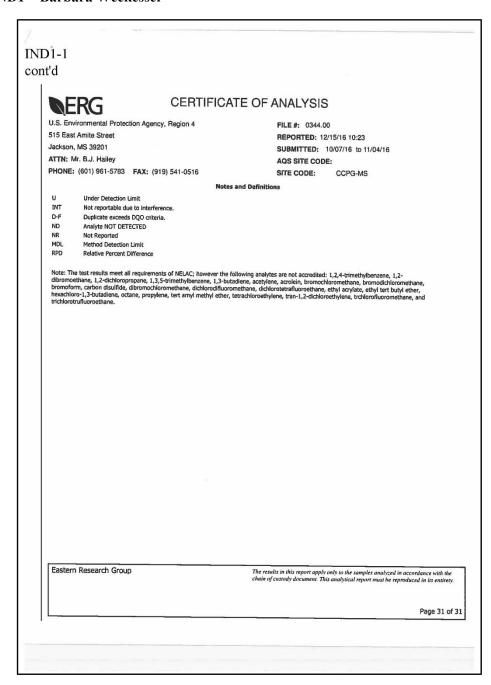
IND1 – Barbara Weckesser

DERG	CERTIFIC	CATE O	F ANALYS	IS	
U.S. Environmental Protection	Agency, Region 4		FILE #: 034	1.00	
515 East Amite Street				12/15/16 10:23	
Jackson, MS 39201				10/07/16 to 11/04/16	
ATTN: Mr. B.J. Hailey			AQS SITE CO		
PHONE: (601) 961-5783 FA	X: (919) 541-0516		SITE CODE:	CCPG-MS	
Analyte	Result	Units	% Difference	Limit (%)	Notes
Air Toxics by EPA Compen	dium Method TO-15	Quality Co	ntrol		
Sequence 1611007 Calibration Check (1611007	-CCV1) Continued		Prepared & Analyz	od: 11/03/16	
n-Octane	2.56	ppbv	1.7	30.00	
Tetrachloroethylene	2.40	ppbv	-4.8	30.00	
Chlorobenzene	2.36	ppbv	-5.6	30.00	
Ethylbenzene m,p-Xylene	2.30 4.75	ppbv	-9.6 -6.0	30.00	
Bromoform	2.37	ppbv	-6.2	30.00 30.00	
Styrene	2.22	ppbv	-11.8	30.00	
1,1,2,2-Tetrachloroethane	2.81	ppbv	10.6	30.00	
o-Xylene	2.53	ppbv	2.3	30.00	
1,3,5-Trimethylbenzene	2.04	ppbv	-19.0	30.00	
1,2,4-Trimethylbenzene m-Dichlorobenzene	2.00 2.06	ppbv	-15.9 -13.9	30.00 30.00	
p-Dichlorobenzene	2.25	ppbv	-13.3	30.00	
o-Dichlorobenzene	2.15	ppbv	-13.9	30.00	
1,2,4-Trichlorobenzene	2.20	ppbv	-11.4	30.00	
Hexachloro-1,3-butadiene	2.31	ppbv	-7.4	30.00	
Sequence 1611019					
Calibration Check (1611019			Prepared & Analyz		
Acetylene Propylene	1.88 1.98	ppbv	-24.4 -19.1	30.00	
Dichlorodifluoromethane	2.25	ppbv ppbv	-9.9	30.00 30.00	
Chloromethane	1.95	ppbv	-22.5	30.00	
Dichlorotetrafluoroethane	2.37	ppbv	-2.9	30.00	
Vinyl chloride	2.06	ppbv	-18.1	30.00	
1,3-Butadiene Bromomethane	2.09	ppbv	-16.5	30.00	
Chloroethane	2.20 2.12	ppbv	-12.9 -17.0	30.00 30.00	
Acetonitrile	2.06	ppbv	-16.5	30.00	
Acrolein	1.94	ppbv	-19.2	30.00	
Trichlorofluoromethane	2.26	ppbv	-9.2	30.00	
Acrylonitrile	2.29	ppbv	-9.9	30.00	
1,1-Dichloroethene Dichloromethane	2.18	ppbv	-12.2	30.00	
Carbon Disulfide	2.29 2.29	ppbv	-9 .1 -8.6	30.00 30.00	
Eastern Research Group		The	results in this report ap	ply only to the samples analyz	ed in accordance with the
		cha	un of custody document	This analytical report must be	e reproduced in its entirety.
					Page 28 of


L-50 INDIVIDUALS

IND1 – Barbara Weckesser

ERG	CERTIFIC	CATE OF	ANALYSI	S	
U.S. Environmental Protection	Agency, Region 4		FILE #: 0344	.00	
515 East Amite Street			REPORTED:	12/15/16 10:23	
Jackson, MS 39201				10/07/16 to 11/04/16	
ATTN: Mr. B.J. Hailey			AQS SITE CO		
PHONE: (601) 961-5783 FA	X: (919) 541-0516		SITE CODE:	CCPG-MS	
Analyte	Result	Units	% Difference	Limit (%)	Notes
Air Toxics by EPA Compen	dium Method TO-15 -	Quality Cor	itrol		
Sequence 1611019 Calibration Check (1611019	9-CCV1) Continued		Prepared & Analyze	d: 11/00/16	
Trichlorotrifluoroethane	2.46	ppbv	-0.2	d: 11/09/16 30.00	
trans-1,2-Dichloroethylene	2.45	ppbv	-0.5	30.00	
1,1-Dichloroethane	2.39	ppbv	-4.6	30.00	
Methyl tert-Butyl Ether	2.42	ppbv	-4.0	30.00	
Chloroprene	2.48	ppbv	-0.9	30.00	
cis-1,2-Dichloroethylene Bromochloromethane	2.40 2.48	ppbv	-4.6 -0.7	30.00	
Chloroform	2.61	ppbv	2.1	30.00 30.00	
Ethyl tert-Butyl Ether	2.51	ppbv	-4.8	30.00	
1,2-Dichloroethane	2.43	ppbv	-3.6	30.00	
1,1,1-Trichloroethane	2.39	ppbv	-5.8	30.00	
Benzene	2,40	ppbv	-5.0	30.00	
Carbon Tetrachloride	2.79	ppbv	12.5	30.00	
tert-Amyl Methyl Ether 1,2-Dichloropropane	2.50 2.33	ppbv	-6.1	30.00	
Ethyl Acrylate	2.33	ppbv ppbv	-9.0 -8.9	30.00 30.00	
Bromodichloromethane	2.39	ppbv	-6.6	30.00	
Trichloroethylene	2.62	ppbv	2.3	30.00	
Methyl Methacrylate	2.18	ppbv	-15.3	30.00	
cis-1,3-Dichloropropene	2.66	ppbv	3.3	30.00	
Methyl Isobutyl Ketone	2.14	ppbv	-16.3	30.00	
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	2.46	ppbv	-1.5	30.00	
Toluene	2.39	ppbv	-5.8	30.00	
Dibromochloromethane	2.42 2.84	ppbv ppbv	-2.8 11.3	30.00	
1,2-Dibromoethane	2.52	ppbv	-0.5	30.00 30.00	
n-Octane	2.19	ppbv	-13.3	30.00	
Tetrachloroethylene	2.48	ppbv	-1.5	30.00	
Chlorobenzene	2.41	ppbv	-3.7	30.00	
Ethylbenzene	2.37	ppbv	-6.8	30.00	
m,p-Xylene Bromoform	4.78	ppbv	-5.3	30.00	
Bromoform Styrene	2.71 2.42	ppbv	7.1 -4.1	30.00	
1,1,2,2-Tetrachloroethane	2.18	ppbv ppbv	-14.3	30.00 30.00	
Eastern Research Group		The chai	results in this report app n of custody document.	ly only to the samples analyze This analytical report must be	d in accordance with the reproduced in its entiret


L-51

IND1 – Barbara Weckesser

L-52 INDIVIDUALS

IND1 – Barbara Weckesser

L-53 INDIVIDUALS

20190225-5155 FERC PDF (Unofficial) 2/25/2019 4:35:20 PM

IND2 – Barbara Weckesser

2013022	3-3133 FERC PDF (GROTTICIAL) 2/23/2019 4.33.20 PR
	Barbara Weckesser, Pascagoula, MS. I would like to enter the following comments concerning FERC Docket No.: CP15-521 the DEIS for the Gulf LNG project being considered in Pascagoula Mississippi. I live at 1502 Cherokee Street in Pascagoula. I am submitting these comments for myself and my family. I am also the president of the Cherokee Concerned Citizens, a C3 non-profit organization.
IND2-1	I have numerous concerns with the DBIS for the Gulf LNG project. Most importantly it does not recognize the terrible air quality conditions citizens who live near the existing industries experience on a daily basis. I complain constantly to local industry contacts, MDEQ, EPA, and the press. It is easy to find documentation of our suffering. There is already terrible air quality for people who live near Bayou Casotte. Myself, my family and many of my neighbors have health issues we believe are caused by the existing poor air quality. We do not need a new source of air pollution, flares and traffic.
IND2-2	Wetlands help control stormwater and storm surge. We live in a low-lying coastal area. We can not afford to lose 38+ acres of wetlands and the protection they provide. Mitigation will not replace the protection we lose.
IND2-3	We have terrible, existing violations of noise quality. This will further add to that.
IND2-4	I participated in the investigation of a nearby pipeline explosion. The investigators were the CSB. Our community was not properly notified of the danger until days later. This new activity will add to the risk of explosions near my house.
IND2-5	The DEIS on 4-216 claims no harm to environmental justice. I completely disagree. We have numerous low-income and minority residents. Clearly, we will get the harm of this project and you will not hear our concerns. The safety issues, additional air pollution, loss of wetlands, increased noise, and increased traffic will definitely cause harm.
	The impacts on my family which includes elderly and children do not need more problems. We are already suffering. This will cause significant additional harm to our quality of life.
IND2-6	The DEIS says that "prior to the end of the DEIS comment period Gulf LNG can fille an updated traffic analysis". I did not see the update so I can't comment.
IND2-7	The fact that the comment period for this was over the holidays was not considerate of including all comments.
IND2-8	To conclude, the purpose and need to export to foreign lands is not adequate to harm our community. We will have additional health problems, die earlier, lose wetland protection, have more safety issues, only to

- IND2-1 The commenter's statements regarding the existing air quality are acknowledged. As stated in section 4.11.1.2 of the EIS, areas where ambient air pollutant concentrations are below the NAAQS (established by the EPA) are designated as attainment, while areas where ambient air concentrations are above the NAAQS are designated as nonattainment. The proposed Project would be constructed in Jackson County, which is in the Southern Mississippi Interstate AQCR. Jackson County is in attainment or unclassifiable for all criteria pollutants.
- IND2-2 As stated in section 4.4 of the EIS, the Project would impact 31.1 acres because CSA-5 would be required to be restored following construction. In addition, as discussed in section 4.4 and in figure 4.4-3, the proposed 50-acre on-site, in-kind compensatory wetland mitigation site would create more wetlands than would be impacted and would be directly south of the Project area.
- IND2-3 The commenter's statements regarding the existing noise quality are acknowledged. As discussed in sections 4.11.2.4 and 4.11.2.5 of the EIS, noise from construction and operations is not expected to result in impacts on NSAs, the closest of which would be 9,400 feet away.
- IND2-4 As stated in section 5.1.12 of the EIS, an evaluation and review of the safety of the proposed Terminal Expansion by the FERC staff, including a review of the cryogenic design of the facilities proposed for liquefaction, related facilities, and safety systems, concluded that the Terminal Expansion would not pose a significant risk or significant increase in risk to public safety with the incorporation of our recommendations. In addition, Gulf LNG would design, construct, operate, and maintain its Pipeline Modifications to meet or exceed the DOT Minimum Federal Safety Standards in 49 CFR 192 and other applicable federal and state regulations.

IND2 – Barbara Weckesser

2019022	5-5155 FERC PDF (Unofficial) 2/25/2019 4:35:20 PM
	. Barbara Weckesser, Pascagoula, MS.
	I would like to enter the following comments concerning FERC Docket No.: CP15-521 the DEIS for the Gulf LNG project being considered in Pascagoula Mississippi. I live at 1502 Cherokee Street in Pascagoula. I am submitting these comments for myself and my family. I am also the president of the Cherokee Concerned Citizens, a C3 non-profit organization.
IND2-1	I have numerous concerns with the DEIS for the Gulf LNG project. Most importantly it does not recognize the terrible air quality conditions citizens who live near the existing industries experience on a daily basis. I complain constantly to local industry contacts, MDEQ, EFA, and the press. It is easy to find documentation of our suffering. There is already terrible air quality for people who live near Bayou Casotte. Myself, my family and many of my neighbors have health issues we believe are caused by the existing poor air quality. We do not need a new source of air pollution, flares and traffic.
IND2-2	Wetlands help control stormwater and storm surge. We live in a low-lying coastal area. We can not afford to lose 38+ acres of wetlands and the protection they provide. Mitigation will not replace the protection we lose.
IND2-3	We have terrible, existing violations of noise quality. This will further add to that.
IND2-4	I participated in the investigation of a nearby pipeline explosion. The investigators were the CSB. Our community was not properly notified of the danger until days later. This new activity will add to the risk of explosions near my house.
IND2-5	The DEIS on 4-216 claims no harm to environmental justice. I completely disagree. We have numerous low-income and minority residents. Clearly, we will get the harm of this project and you will not hear our concerns. The safety issues, additional air pollution, loss of wetlands, increased noise, and increased traffic will definitely cause harm.
	The impacts on my family which includes elderly and children do not need more problems. We are already suffering. This will cause significant additional harm to our quality of life.
IND2-6	The DEIS says that "prior to the end of the DEIS comment period Gulf LNG can fille an updated traffic analysis". I did not see the update so I can't comment.
IND2-7	The fact that the comment period for this was over the holidays was not considerate of including all comments.
IND2-8	To conclude, the purpose and need to export to foreign lands is not adequate to harm our community. We will have additional health problems, die earlier, lose wetland protection, have more safety issues, only to

- IND2-5 See the responses to comments IND2-1, IND2-2, IND2-3, IND2-4, and IND2-6 regarding impacts on air quality, wetlands, noise, and traffic. As stated in section 4.9.7 of the EIS, although there are environmental justice communities within the study area, given the minor impacts from the Project overall and the distance from the Terminal Expansion (the main Project construction) to nearby residences, we conclude the Project would not have a disproportionately high and adverse health or environmental effects on minority or low-income populations.
- IND2-6 See the response to comment FA2-6.
- IND2-7 The commenter's statement regarding the comment period is acknowledged. On February 7, 2019, because of a funding lapse at certain federal agencies between December 22, 2018 and January 25, 2019, the Commission reopened the comment period until February 25, 2019.
- IND2-8 The commenter's statement regarding purpose and need is acknowledged. According to 40 CFR 1502.13, an EIS should only "briefly" discuss the purpose and need explained by the Applicants in their proposals to which the FERC is responding. This brief summary can be found in section 1.1 of the EIS. The EIS is not a decision document. We anticipate that the Commission Order will include further consideration of Project need.

IND2 – Barbara Weckesser

2019022	25-5155 FERC PDF (Unofficial) 2/25/2019 4:35:20 PM
INID2-8	accommodate the profits of exporters. We should not die and suffer to provide other's exports.
cont'd	provide other's exports.
conta	

PS1 – Pelican Landing Convention Center – December 18, 2018

```
20190123-4000 FERC PDF (Unofficial) 01/23/2019
                                                                 1
                           UNITED STATES OF AMERICA
                     FEDERAL ENERGY REGULATORY COMMISSION
                           Office of Energy Projects
       5 Gulf LNG Liquefaction Company, LLC Dkt. No. CP15-521-000
       6 Gulf LNG Energy, LLC
          Gulf Listening Pipeline, LLC
           ----X
                         GULF LNG LIQUEFACTION PROJECT
       11
       12
                                   Pelican Landing Convention Center
       13
                                   6217 Mississippi Highway 613
       14
                                   Moss Point, Mississippi 39563
                                   Tuesday, December 18, 2018
       15
       16
       17
               The public comment meeting, pursuant to notice, convened
           at 3:40 p.m.
       19
       21
       22
       23
       24
       25
```

PS1 – Pelican Landing Convention Center – December 18, 2018

```
20190123-4000 FERC PDF (Unofficial) 01/23/2019
                                 VERBAL COMMENTS
                       MS. WECKESSER: Barbara, Barbara Wecke
        3 s s e r, 1502 Cherokee Street, Pascagula, Mississippi,
                       My comments are, the neighborhood I live in can
PS1-1
        6 take no more emissions from anywhere. It was my
            understanding this LNG would not be processing, but
        \theta shipping and receiving. The letter I received made mention
        9 to fliers. Chevron, your adjoining title 5 company, already
            puts out over the limit for us to breathe. I am submitting
       11 two pages from two different reports of what we are having
       12 to breathe. I ask before any permit is done, look at
       13 removing residents from all these chemicals. By the way,
       14 this subdivision was here before industry. Does Clean Air
            Water Act speak for residents? Must not, or something would
            have already been done for these residents.
       17
                       And then here is the two pages of chemicals.
       18
                       MR. WECKESSER: You think you should read them so
            they could be in the record?
                       THE REPORTER: We'll help put them in the record.
       21
                       MS. WECKESSER: Well, it's, I mean, I just copied
       22
            two pages out of here versus trying to give you the whole
       24
            thing.
                       FERC: Whatever you want.
```

PS1-1 See the response to comment IND1-1 regarding air quality.

PS1 – Pelican Landing Convention Center – December 18, 2018

201901	23-400	00 FERC PDF (Unofficial) 01/23/2019
		3
	1	MS. WECKESSER: Well, I can get another copy of
	2	the whole thing. So, I'm just going to use the whole thing
	I 3	because this subdivision, I'm telling you, is having to
	4	breathe everything in the world in and in the letter you
PS1-2	5	sent, the flier caught my eye.
	6	My husband was in the hospital up on the fourth
	7	floor at Singing River Hospital on Highway 90, and out of
	8	five nights Chevron put off flares for four. All those
	9	emissions are going into our lungs, and if we have LNG out
	10	here processing this well, which it looks like that's what
	11	the goal is now, then we're going to have more emissions.
	12	We already have Chevron putting out three to four times more
	13	what they're supposed to do. Then we're going to have LNG.
	14	We have no EPA or MDEQ that controls what you put out,
	15	because that's just a given that you're just going to do it
	16	and they don't care. Otherwise, they would have already
	17	done something about it.
PS1-3	18	And when I have, in my neighborhood alone, and I
131-3	19	look at 11 houses and in two years out of those 11 houses,
	20	five people have died with cancer. That's 11 houses at the
	21	bottom end of my subdivision. And that's what's going on.
	22	That's not counting the rest of the 120 households out
	23	there. That's those five down there that are gone out of
	24	those 11 houses. And all with cancer.
	25	So, if I look and I read this report that I paid

PS1-2 The FERC cannot comment on Chevron's permit requirements.

Gulf LNG would be required to obtain the necessary air permits in coordination with the EPA and the MDEQ. Gulf LNG would be required to adhere to all permit requirements.

PS1-3 See the response to comments IND1-1 regarding air quality.

PS1 – Pelican Landing Convention Center – December 18, 2018

```
20190123-4000 FERC PDF (Unofficial) 01/23/2019
        1 $670-some to get done, and I see that I'm breathing in
PS1-3
           gypsum, Anurite (ph), clays, feldspars, rust, iron oxide,
cont'd
        3 titanium dioxide, paint, processed cellulose, natural
        4 cellulose, and wood, zinc oxide, fiberglass, starch, even
        5 maybe skin fragments. The sample contained pollen corks,
        6 calcumite, dolomite, (ph) all of this in my area, that I
            paid for. This one MDEQ did, out of one that they did for
        8 us, and out of this one we're breathing Acetone, prolene --
        9 some of these words I can't even pronounce, so that's why I
            say I breath in 'doolene, moolene, and doolene.' And that's
       11 the way it goes.
       12
                       And it's not, it's not a little bit. And when
       13 they give us our reports and they say, 'Oh, well, this is
       14 figured on an eight hour work day.' I don't live in my
        15 house eight hours a day. I live in my house 24/7. And
            then, on top of that, if we end up with this LNG out there,
           adding to this, then what are we supposed to do? Evidently
       18 they want us all to die off. And if it keeps going the way
       19 it is, we soon will be. And that will be the end of my
            comment.
       21
                       MS. CROSSLIN: Jennifer Crosslin, J E N N I F E
            R, and then Crosslin, C R O S S L I N. I'm a resident of
       23 Jackson County. Do I need to give my address? No? And I
       24 am a member of the Cherokee Concerned Citizens. It's a
       25 neighborhood group mostly made up of residents that live
```

PS1 – Pelican Landing Convention Center – December 18, 2018

2019012	3-400	00 FERC PDF (Unofficial) 01/23/2019
	1	there. I've been an advocate and organizer working with the
	2	community for the last four years.
	1 3	So, I come today to speak as a member of the
PS1-4	4	Cherokee Concerned Citizens and also as a concerned parent
	5	and human being who lives in Jackson County and really on
	6	this planet. First, I think with the, in the last four-and-
	7	a-half years, four years working with Cherokee Concerned
	8	Citizens and hearing firsthand some of the things they've
	9	been experiencing, ranges from respitory problems to memory
	10	and mental problems, fertility problems to cancer, to body
	11	rashes and so forth; so, of this neighborhood of about 150
	12	households less, so now over the years people haven't come
	13	back after Katrina but they are being impacted heavily by
	14	the six, maybe seven, off the top of my head, title 5
	15	industries that pollute, reported to the EPA, over 2.4
	16	million pounds of hazardous pollutants and certainly
	17	additional criteria pollutants, climate change pollutants.
	18	I think that even though the EIS concludes that
PS1-5	19	there are no measurable environmental impacts to be
	20	concerned with, I think that even another pound of pollution
	21	is of concern, particularly when it comes to this community
	22	and what they've been impacting. One of these things that I
	23	find really interesting, I'm sort of, can still call myself
	24	a novice because I'm not a scientist in terms of an
	25	environmental scientist; I have a political science degree.

PS1-4 It is expected that the applicable federal and state air quality standards and regulations would be addressed accordingly in the individual air quality permits obtained by the companies in the Project area. Gulf LNG would be required to obtain the necessary permits and adhere to any permit requirements. As a result, we conclude that air quality impacts during operation of the proposed Project would be minor.

As detailed in section 4.11, Gulf LNG conducted air dispersion modeling for compliance with the NAAQS and PSD increments as required before issuance of the air quality permit. The preliminary modeling analysis must show that emissions from the Terminal Expansion are less than the respective SIL to be considered de minimis with insignificant air quality impacts. In the event that emissions exceed the SILs, then all on-property sources and off-site sources within 50 km of the project site must be modeled in a full impact analyses. This process ensures that an adequate level of modeling is conducted to ensure that the cumulative air impacts of all nearby sources do not affect air quality.

PS1-5 CAA permitting requirements and emission limits are set in order to be protective of the environment and human health. These requirements and limits are discussed in section 4.11.1 of the EIS.

See also the response to comment IND1-1.

PS1 - Pelican Landing Convention Center - December 18, 2018

20190123-4000 FERC PDF (Unofficial) 01/23/2019 1 But one of the things I that continually perplexes me about PS1-5 the environmental impact studies that I come across is that 3 what gets left out is public health and the health of people. And somehow there's this arbitrary separation from environment that excludes people, as if the very reason for why we're wanting the clean air, water and land is not to sustain our species. And so, what we see is this 8 disconnect and in working with this community this is not 9 something that is just with FERC, this is something that is just structural with every agency that deals with the oil 11 and gas and chemical industries and the regulation of 12 environmental protection. They basically do not see, you know, do not investigate the correlation in a really meaningful way between the environmental impacts and the health impacts and this community has been repeatedly, sort of, pushed aside their concerns and their, in that the health impacts that they're seeing have been ignored and public processes like this really don't give them the opportunity to meaningfully share those concerns because, as stated in your EIS, just even in the notice of publication 21 it basically tells you that really what they want you to comment on is the environmental impact study in itself. 23 And so the decision's going to be based on, really, your critique of their, sort of, analysis of the Environmental Impact, but if the language around public

PS1-6 See also the response to comment IND1-1.

PS1-7 The EIS is not a decision document. The Commission would issue its decision in an Order. See also the response to comment IND1-1.

PS1 – Pelican Landing Convention Center – December 18, 2018

20190123-4000 FERC PDF (Unofficial) 01/23/2019 7 health is not even included in the document, then what types PS1-5 of comments when it comes to the concerns of public health 3 and the impact that these communities are experiencing, how does those even get weighed in? And basically, what I've been told by other agencies, not particularly FERC, but is that they just don't, which is disheartening and frustrating and really points to the fact that this public process, in 8 and of itself, is sort of an environmental injustice because 9 it does not allow for people to meaningfully engage just because you send out a public notice or you contact the leaders of certain organizations; but if you're not fully 12 investigating their public health concerns you haven't made 13 an effort, for example, to do a health study to investigate, 14 you know, we say, we've got six people died of cancer that 15 live on two streets in the last year. That seems a little odd to us. But it's outside the purview of this agency, it's outside the purview of any agency that regulates these 19 industries and so it just doesn't get done and it gets left 20 out and so, yes, it's an insult to community, impacted 21 communities, this one and communities all around the United States that have to, sort of, meaningfully participate when 23 really their comments about public health and their real 24 concerns are meaningfully left out of the document, of the decision making process, of the structure in and of itself.

PS1 – Pelican Landing Convention Center – December 18, 2018

20190123-4000 FERC PDF (Unofficial) 01/23/2019 And it's just not fair and it's unjust. Yes. This community, it says here, just even at 3 a glance at the environmental impact study, you know, looking at it just as I noted, it doesn't say anything about, there's no, you know, there's no conversion, it says: 6 so there's a health impact, or, there's an impact at this many emissions or we anticipate this type of releases, but 8 there's no conversion factor that says this environmental amount of emissions turns into this increased rate of, you know, asthma or, you know, particular health impacts. 11 Now we know, I've seen reports. We can draw 12 conclusions between air quality and asthma rates but they're not done in these reports, they're not done in any of the 14 title 5 permit processes and so as citizens when we read this, we read, 'this many emissions.' Well, what does that tell us? I don't know what that means. Does that mean it's going to be harder to breathe? Does it mean that 10 18 years from now because you pollute, you pollute, you pollute, you pollute that I'm going to have cancer or that someone living near me, does it explain the reason why my 21 daughter has mental health issues and is having difficulty concentrating in school? Does it explain why my son has 23 asthma? I don't really know and these are the types of 24 questions that the community has and go unanswered repeatedly over and over again.

PS1 – Pelican Landing Convention Center – December 18, 2018

```
20190123-4000 FERC PDF (Unofficial) 01/23/2019
                       And I think that it's intentional, not
            necessarily intentional by you guys, and you know as
            employees of FERC, but it's intentional in the political
            process and it's designed to benefit the expansion of the
            oil and gas and chemical industries and it really does not
            protect the interests of people. And what we're seeing now
            as the climate change report, and this is my, sort of, last
           formal -- or actually, before I move on there was one thing
            I did want to mention. I remember taking a picture of it.
                       And I'm going to comment, I'm going to take more
       11
            time to go through it and have written comments to sort of
            go through each section that you wrote out; but it
            basically says the environmental justice that, the
            environmental justice communities, they're studying, so the
            analysis of the environmental justice impact, which is
            obviously legally required, is that though there's been
            environmental justice -- communities in the area is a minor
            impact, due to the distance and the main project
            construction. But as far as I understand this EIS study is
            supposed to be construction and operation.
       21
                       And so operation is not explicitly -- maybe as
PS1-6
            implied in the report somewhere -- but it certainly implied
       23 it should be explicit in this concluding paragraph. It
       24 makes me feel like just in reading this, and reading, you
       25 know, through, as I said, I just skimmed through the
```

PS1-8 See the response to IND2-5.

PS1 – Pelican Landing Convention Center – December 18, 2018

201901:	20190123-4000 FERC PDF (Unofficial) 01/23/2019 10					
		10				
PS1-6 cont'd	I 1	outline, they really haven't done their due diligence in				
	2	terms of determining the health impacts or the environmental				
	3	justice impacts of this community that has been, you know,				
	4	identified. So, yes, last thing is I don't				
	5	live in the community. I care very deeply about the people				
	6	in the community and Barbara, and I've watched people lose				
	7	their loved ones and I it pisses me off that this is				
	8	happening to them. And for many of them it's not as simple				
	9	as just getting up and moving, that's what some of the				
	10	people have told them, to get up and move. And that is not,				
	11	that is not a real solution and it is not one that you				
	12	should, it's not the burden of the people. It should be the				
	13	burden of the industry. And then, and also, I'm a parent				
PS1-7	14	and a human being and I have two children and climate				
	15	change. It's not even in the report. It says regional				
	16	climate. There is no climate change. We just got a U,				
	17	United, U.N. World report that said, basically, we need to				
	18	do some radical changes and we need some swift, radical				
	19	action, now. Even Trump came on board, a conservative party				
	20	that has been known to deny climate change as being a human				
	21	impact, has come out and said, 'This is true, and we need				
	22	swift action.'				
PS1-8	23	I don't see why we're continuing to expand the				
	24	oil and gas industry. And we're expanding in such a way to				
	25	export gas and not even to be using what we have and there				

PS1-9 Climate change is discussed in section 4.13 of the EIS.

PS1-10 The development of natural gas is not the subject of this EIS nor is the issue directly related to the proposed Project. Production and gathering activities, and the pipelines and facilities used for these activities, are not regulated by FERC, but are overseen by the affected region's state and local agencies with jurisdiction over the management and extraction of the resource.

PS1 – Pelican Landing Convention Center – December 18, 2018

201901	20190123-4000 FERC PDF (Unofficial) 01/23/2019					
	1	is several reports which I will probably look for and cite				
	2	in my comments, but there are several reports that say that				
	3	we burn up all of the, we use all of the gas and coal that				
	4	we have we will basically bring on this extinction. And				
	5	frankly, just the very fact that we continue to expand the				
	6	oil and gas industry when it's absolutely not necessary is				
	7	just, just infuriating. And when I think about what's going				
	8	to happen for future generations.				
	9	Also, I know that essentially exporting is not				
	10	exclusively an expansion but it certainly puts in, builds				
	11	infrastructure for an expansion. Building infrastructure is				
	12	part of the expansion. And so, and that's what we're doing				
	13	here. We are building infrastructure that continues to				
	14	support an industry that needs to be obsolete yesterday for				
	15	the future of all of us.				
PS1-9	16	Lastly, what I did notice just briefly going over				
1017	17	it, the climate change, in addition to not even climate				
	18	change impacts, the environmental impact study does not				
	19	include just the impact as it connects to all parts, right?				
	20	The gas industry is a cradle-to-grave situation where its				
	21	extraction, it's carried, it's transported, it's processed,				
	22	and then it's transported again, then it's used and burned.				
	23					
	24	And so, the impact from the very beginning to not				
	25	just this community, it's just one community that's going to				
I						

PS1-11 The environmental analysis of induced natural gas production, LNG transport, and end use are not only beyond the scope of NEPA, but too speculative to permit meaningful consideration as part of our analysis. See section 4.13.1.15 of the EIS.

PS1 – Pelican Landing Convention Center – December 18, 2018

201901	20190123-4000 FERC PDF (Unofficial) 01/23/2019					
DOL C	1 1	be impacted on the whole process, but communities all				
PS1-9 cont'd	2	throughout the nation are going to be impacted and globally				
	3	we're going to be impacted; that is not included in the EIS				
	4	study and that certainly is an environmental process and				
	5	it's something that I've noticed that FERC and a lot of				
	6	other agencies do, they separate out, and of course, that				
	7	again, supports the expansion of the oil and gas because				
	8	industry gets away with, sort of, not looking at the whole				
	9	impact. They get to section it off and say, 'Oh, well, it's				
	10	not, it doesn't seem so bad when you look at it from this				
	11	perspective.' And that's, all right.				
PS1-10	12	So, also, one final point. Promise. Cumulative				
P31-10	13	impact, sort of the same thing. I notice that you have a				
	14	list, I need to do a better job, but you have a list of all				
	15	the industries listed there. It doesn't seem clear to me				
	16	that the cumulative impact has been looked at in any real				
	17	way to measure, just as I said before, that converts, you				
	18	know, sort of the collective emissions and its real health				
	19	impacts on the community. And so, certainly this is a				
	20	cumulative impact, a question of cumulative impact for this				
	21	community. And it's not just, you know, this one facility,				
	22	but several others that are releasing emissions.				
	23	I think that's it. Thank you.				
	24	MR. FREELAND: My name is George Freeland.				
	25	That's FREELAND. Suffix Junior. I'm the Executive				

PS1-12 Cumulative impacts are discussed in section 4.13 of the EIS.

PS1 – Pelican Landing Convention Center – December 18, 2018

20190123-4000 FERC PDF (Unofficial) 01/23/2019					
	1	Director for the Jackson County Economic Development			
	2	Foundation.			
	3	So, on behalf of the Foundation's members, those			
PS1-11	4	being the Jackson County Board of Supervisors, the Jackson			
	5	County Port Authority, the municipalities of Pascagoula,			
	6	Moss Point, Gautier, and Ocean Springs, as well as all other			
	7	significant industrial tenants in the community, I express			
	8	our support of Kinder Morgan's proposed liquefaction			
	9	terminal in Bayou Casotte. The Foundation has concluded the			
	10	significant economic development value and benefits of a			
	11	liquefaction terminal, and as such commit our support in any			
	12	way that might be required by Kinder Morgan and/or its			
	13	agents.			
	14	[Jokingly:] That has nothing to do with the			
	15	Environmental impact Statement itself but there you have it.			
	16	Don't put that in the record.			
	17	FERC: That's absolutely fine. You can leave any			
	18	comment that you want.			
	19	MR. FREELAND: Very good. Good enough?			
	20	FERC: All right. Thank you.			
	21	MR. CUMBEST: I simply would like to voice my			
PS1-12	22	support for the Kinder Morgan project. I'm sure you all are			
	23	aware we already have part of the facility located there.			
	24	Originally, Gulf LNG was going to import liquefied natural			
	25	gas; and so it's exciting now to see that facility is going			

PS1-13 The commenter's statements are acknowledged.

PS1-14 The commenter's statements are acknowledged.

PS1 – Pelican Landing Convention Center – December 18, 2018

```
20190123-4000 FERC PDF (Unofficial) 01/23/2019
                                                                   14
        1 to be used, and as a local banker, I'm very much excited
PS1-12
        2 about the jobs and the ongoing employment that it will
cont'd
        3 provide. And it's good to have a top tier company like
        4 Kinder Morgan involved in the process. I'm a little
        5 familiar with them. I have a very good opinion of the way
       6 they conduct their business. That's it.
                      [Pause 5:00 - 7:30]
                      [Whereupon at 7:30 p.m., the verbal comment
        9 session concluded.]
       11
       12
       13
       14
       15
       16
       17
       18
       19
       20
       21
       22
       23
       24
       25
```

L-70

APPENDIX M

Keyword Index

KEYWORD INDEX

- access road, ES-4, 2-9, 2-13, 2-15, 2-17, 2-18, 2-22, 4-6, 4-8, 4-10, 4-11, 4-34, 4-45, 4-82, 4-83, 4-84, 4-85, 4-98, 4-164, 4-166, 4-180, 4-221, 5-12, 5-16
- air emissions, 4-109, 4-121, 4-227, 4-228
- Air Quality Control Region (AQCR), 4-109, 4-111
- Alabama red-bellied turtle, 5, 5-6
- alternatives, ES-1, 4, 9, 1-4, 1-12, 1-24, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-10, 3-11, 3-12, 3-13, 3-14, 3-15, 4-15, 4-20, 4-32, 4-36, 4-38, 4-79, 4-137, 4-147, 5-1, 5-10, 5-11
- American Society of Civil Engineers (ASCE), 4-137, 4-161, 4-166, 4-168, 4-169, 4-170, 4-171
- American Society of Mechanical Engineers (ASME), 4-154, 4-185, 4-190, 5-21, 5-26
- Bald and Golden Eagle Protection Act (BGEPA), 1-7, 1-8, 1-22, 4-54, 4-78, 4-80
- ballast water, 2-23, 4-26, 4-27, 4-28, 4-48, 4-49, 4-57, 4-63, 4-64, 4-66, 4-71, 4-215
- Bayou Casotte, ES-3, ES-4, ES-6, ES-8, 1-1, 1-2, 1-17, 2-1, 2-4, 2-6, 2-9, 2-11, 2-21, 2-23, 3-11, 4-2, 4-6, 4-20, 4-21, 4-24, 4-26, 4-27, 4-51, 4-58, 4-59, 4-61, 4-62, 4-63, 4-64, 4-65, 4-70, 4-71, 4-72, 4-82, 4-85, 4-88, 4-98, 4-99, 4-100, 4-101, 4-102, 4-105, 4-128, 4-143, 4-146, 4-180, 4-193, 4-196, 4-197, 4-198, 4-199, 4-200, 4-201, 4-202, 4-203, 4-204, 4-207, 4-208, 4-209, 4-210, 4-211, 4-213, 4-214, 4-215, 4-216, 4-217, 4-219, 4-221, 4-222, 4-224, 4-225, 4-226, 4-227, 4-231, 5-5, 5-6, 5-7, 5-8, 5-11
- Bayou Casotte Dredge Material Management Site (BCDMMS), 1-3, 1-18, 1-19, 2-4, 2-9, 2-10, 2-19, 3-8, 3-10, 3-11, 3-12, 4-2, 4-6, 4-13, 4-24, 4-26, 4-36, 4-43, 4-45, 4-50, 4-51, 4-55, 4-56, 4-82, 4-83, 4-85, 4-86, 4-88, 4-163, 4-164, 4-171, 4-199, 4-204, 4-210, 4-211, 4-213, 4-217, 5-2, 5-11
- best management practice (BMP), 4-29, 4-46, 4-213, 4-215, 4-217, 4-219

- Biological Assessment (BA), ES-6, 1-8, 1-10, 1-19, 4-66, 4-73, 4-74, 5-6
- blue whale, ES-6, 5-6
- boiling liquid vapor explosion (BLEVE), 4-149, 4-175, 4-177
- brown pelican, ES-6, 4-52, 4-79, 4-80, 5-7
- Carolina grasswort, ES-6, 4-49, 4-79, 4-81, 4-220, 5-7, 5-15
- Clean Air Act (CAA), 1-9, 1-14, 1-19, 1-22, 1-24, 4-110, 4-111, 4-113, 4-115, 4-117
- Clean Water Act (CWA), 1-5, 1-8, 1-12, 1-15, 1-19, 1-20, 1-21, 1-22, 1-23, 4-24, 4-26, 4-32, 4-61, 4-214, 4-216, 4-219, 5-2, 5-3
- climate change, 1-13, 4-228, 4-229, 4-230
- Coastal Zone Management Act of 1972 (CZMA), 1-5, 1-19, 1-22, 1-24, 4-32, 4-90, 4-91
- Coastal Zone Management Program (CZMP), ES-6, 1-18, 1-24, 4-90, 5-7, 5-15
- compensatory mitigation, ES-5, 1-13, 4-33, 4-34, 4-38, 4-39, 4-41, 4-42, 4-51, 4-52, 4-56, 4-62, 4-66, 4-91, 4-216, 4-221, 5-3, 5-4, 5-6
- construction emissions, 1-22, 4-117, 4-119, 4-120, 4-121, 4-122
- construction noise, ES-7, 4-131, 4-133, 4-231, 5-9
- Construction Support Area (CSA), ES-3, ES-4, ES-5, ES-6, ES-9, 1-3, 1-9, 2-11, 2-12, 2-14, 2-15, 2-16, 2-18, 2-22, 3-1, 3-12, 3-15, 4-7, 4-9, 4-10, 4-11, 4-12, 4-16, 4-17, 4-18, 4-19, 4-20, 4-30, 4-33, 4-34, 4-36, 4-38, 4-42, 4-45, 4-46, 4-52, 4-53, 4-55, 4-65, 4-83, 4-84, 4-86, 4-98, 4-100, 4-105, 4-106, 4-107, 4-203, 4-213, 4-225, 4-226, 5-2, 5-3, 5-4, 5-5, 5-8, 5-10, 5-11, 5-12, 5-15
- cooling water, 4-27, 4-64, 4-189, 5-25
- Council on Environmental Quality (CEQ), 1-5, 1-11, 4-196, 4-207

- critical habitat, 1-7, 1-13, 1-19, 4-24, 4-73, 4-77, 5-6
- Destin Pipeline Company, LLC, ES-3, 1-3
- earthquake, 4-3, 4-4, 4-163, 4-166, 4-167, 4-168, 4-169, 4-192, 5-28
- eastern black rail, ES-6, 4-76, 5-6
- emergency response, 1-5, 2-24, 2-25, 4-143, 4-150, 4-155, 4-175, 4-177, 4-180, 4-182, 4-186, 4-190, 4-192, 4-194, 4-215, 4-232, 5-17, 5-22, 5-26, 5-28
- Emergency Response Plan (ERP), 1-5, 1-23, 2-24, 2-25, 4-97, 4-146, 4-155, 4-180, 4-182, 5-18
- emergency shutdown (ESD), 2-24, 4-134, 4-141, 4-153, 4-155, 4-158, 4-160, 4-183, 4-184, 4-185, 4-186, 4-187, 5-19, 5-20, 5-22, 5-24
- employment, 4-92, 4-94, 4-95, 4-223, 5-8
- Endangered Species Act (ESA), ES-6, ES-9, 1-5, 1-7, 1-8, 1-18, 1-19, 1-20, 1-22, 4-24, 4-54, 4-55, 4-66, 4-73, 4-74, 4-220, 5-6, 5-15
- environmental justice, 4-101, 4-104, 4-226
- Essential Fish Habitat (EFH), ES-4, ES-5, ES-9, 1-4, 1-8, 1-10, 4-57, 4-66, 4-67, 4-68, 4-69, 4-70, 4-71, 4-72, 4-219, 5-1, 5-5, 5-6
- Federal Aviation Administration (FAA), 1-20, 4-178, 4-179, 4-181, 5-16, 5-17
- Federal Emergency Management Agency (FEMA), 1-20, 4-171, 4-172
- Federal Register (FR), ES-4, 1-9, 1-11
- fin whale, ES-6, 5-6
- flare tower, ES-2, 1-2, 2-6, 2-14, 2-15, 2-22, 3-11, 4-8, 4-34, 4-51, 4-52, 4-55, 4-79, 4-80, 4-88, 4-89, 4-90, 4-91, 4-178, 4-218, 5-7
- flaring, 4-34, 4-44, 4-51, 4-55, 4-90, 4-114, 4-126, 4-222
- flooding, 4-3, 4-4, 4-5, 4-10, 4-166, 4-172, 4-229, 4-230
- floodplain, 1-20, 4-5, 4-171
- fossil fuel, 3-2, 3-13, 3-14, 4-109, 4-117, 4-119, 4-229

- Free Trade Agreement (FTA), ES-2, 1-3, 1-6, 1-21, 2-1, 3-3, 4-127, 4-132
- fugitive dust, ES-7, 4-109, 4-119, 4-120, 4-121, 4-227, 5-8
- fugitive emissions, 4-109, 4-112, 4-117, 4-121, 4-122, 4-126
- geologic hazards, 4-3
- geotechnical, 1-10, 4-2, 4-3, 4-162, 4-163, 4-165, 4-166, 4-168, 4-169, 4-180, 5-16
- green sea turtle, 6, 4-78, 5-6
- greenhouse gas (GHG), 1-13, 1-14, 3-13, 3-14, 3-15, 4-109, 4-112, 4-113, 4-114, 4-117, 4-118, 4-119, 4-120, 4-121, 4-122, 4-123, 4-125, 4-126, 4-227, 4-228, 4-229, 4-230
- gulf sturgeon, ES-6, 4-24, 4-74, 4-77, 4-78, 5-6
- Gulfstream Natural Gas System, LLC, ES-3, 1-3
- hawksbill sea turtle, ES-6, 5-6
- hazardous air pollutants (HAP), 4-109, 4-112, 4-114, 4-115, 4-116, 4-122, 4-227
- hospitals, 4-97, 4-111, 4-127, 4-143, 4-149, 4-169, 4-201, 4-208, 4-216, 4-217, 4-223, 4-225
- housing, 4-88, 4-92, 4-95, 4-96, 4-102, 4-200, 4-201, 4-208, 4-216, 4-217, 4-218, 4-221, 4-223, 4-224, 5-7
- humpback whale, ES-6, 5-6
- hurricanes, 4-4, 4-51, 4-163, 4-166, 4-169, 4-170, 4-171, 4-172, 4-210, 4-229
- interior least tern, ES-6, 4-78, 5-6
- invasive species, 4-47, 4-50, 4-53, 4-63, 4-64, 4-71
- least tern, ES-5, 5-6
- leatherback sea turtle, ES-6, 5-6
- Letter of Determination (LOD), ES-8, 1-7, 4-135, 4-138, 4-166, 4-170, 4-193, 5-10
- Letter of Recommendation (LOR), 1-6, 1-21, 2-4, 4-101, 4-141, 4-142, 4-146, 4-193, 5-10
- loggerhead sea turtle, ES-6, 5-6
- low-income, 1-13, 4-101, 4-102, 4-105, 4-223, 4-226, 5-8

- Marine Mammal Protection Act (MMPA), 1-8, 1-18, 1-20
- mean sea level (msl), 1-17, 2-5, 2-6, 2-19, 2-21, 4-1, 4-2, 4-3, 4-9, 4-18, 4-41, 4-52, 4-58, 4-60, 4-64, 4-71, 4-72, 4-80, 4-134, 4-163, 5-2
- Migratory Bird Treaty Act (MBTA), 1-7, 1-8, 1-22, 4-54
- minority, 1-13, 4-101, 4-102, 4-103, 4-105, 4-223, 4-226, 5-8
- Mississippi Department of Environmental Quality (MDEQ), ES-7, 1-8, 1-10, 1-13, 1-14, 1-15, 1-17, 1-18, 1-21, 1-22, 1-24, 2-24, 4-13, 4-15, 4-16, 4-18, 4-21, 4-24, 4-29, 4-32, 4-38, 4-41, 4-42, 4-56, 4-61, 4-68, 4-110, 4-112, 4-113, 4-117, 4-119, 4-123, 4-125, 4-203, 4-210, 4-212, 4-215, 4-216, 4-227, 4-228, 4-230, 5-2, 5-3, 5-9
- Mississippi Department of Marine Resource (MDMR), ES-5, ES-6, ES-9, 1-10, 1-15, 1-18, 1-22, 1-23, 1-24, 2-18, 2-19, 4-25, 4-32, 4-38, 4-41, 4-42, 4-49, 4-56, 4-90, 4-216, 4-221, 5-3, 5-7, 5-15
- Mississippi Department of Wildlife, Fish, and Parks (MDWFP), ES-6, ES-9, 1-10, 1-23, 4-52, 4-73, 4-75, 4-76, 4-78, 4-79, 4-80, 4-81, 5-6
- Mississippi Office of the Secretary of State, 1, 1-4, 1-22
- National Ambient Air Quality Standards (NAAQS), 1-13, 3-15, 4-109, 4-110, 4-111, 4-112, 4-117, 4-123, 4-124, 4-125, 4-227
- National Emission Standards for Hazardous Air Pollutants (NESHAP), 4-116
- National Environmental Policy Act of 1969 (NEPA), ES-1, ES-8, 1-1, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-11, 1-19, 1-24, 3-1, 4-66, 4-102, 4-135, 4-174, 4-193
- National Fire Protection Association (NFPA), 1-7, 2-5, 2-10, 2-23, 2-24, 4-136, 4-137, 4-138, 4-149, 4-152, 4-153, 4-154, 4-155, 4-156, 4-157, 4-159, 4-160, 4-161, 4-162, 4-163, 4-165, 4-166, 4-167, 4-168, 4-174, 4-176, 4-184, 4-186, 4-188, 4-189, 4-191, 5-20, 5-22, 5-24, 5-25, 5-27

- National Historic Preservation Act (NHPA), 1-5, 1-18, 1-19, 1-22, 1-23, 4-106, 4-107, 4-108, 5-8
- National Marine Fisheries Service (NMFS), ES-1, ES-5, ES-6, ES-9, 1-4, 1-8, 1-10, 1-13, 1-18, 1-19, 1-20, 4-24, 4-38, 4-41, 4-58, 4-59, 4-60, 4-66, 4-67, 4-68, 4-69, 4-73, 4-74, 4-76, 4-77, 4-78, 4-220, 5-1, 5-5, 5-6, 5-15
- National Pollutant Discharge Elimination System (NPDES), 1-8, 1-23, 4-19, 4-27, 4-29, 4-63, 4-64, 4-65, 4-70, 4-71, 5-3
- Natural Gas Act (NGA), ES-1, 1-1, 1-3, 1-5, 1-6, 1-20, 1-24, 3-3, 4-54, 4-136
- New Source Performance Standards (NSPS), 3-15, 4-114, 4-115, 4-118, 4-125
- New Source Review, 4-113, 4-118
- Noise Sensitive Area (NSA), ES-7, 4-128, 4-129, 4-130, 4-131, 4-132, 4-133, 4-134, 4-230, 4-231, 5-9, 5-16
- non-jurisdictional, 1-15, 1-17, 2-5, 3-14, 4-198, 4-216, 4-217, 4-221, 4-227, 4-231, 5-10
- North American Vertical Datum, 1-19, 2-1, 2-10, 2-19, 2-20, 4-3, 4-6, 4-39, 4-86, 4-163, 4-171, 4-173, 4-199, 4-211
- Notice of Availability (NOA), ES-4, 1-1, 1-9, 1-11, 4-102
- Notice of Intent (NOI), ES-3, 1-9, 1-22, 4-107
- Office of Energy Projects (OEP), ES-1, 1-1, 4-74, 4-132, 4-180, 4-181, 4-190, 4-192, 5-12, 5-13, 5-14, 5-15, 5-16, 5-17, 5-27, 5-29
- operating basis earthquake (OBE), 4-167, 4-168
- operational noise, ES-7, 4-52, 4-127, 4-132, 4-134, 4-231, 5-9
- peregrine falcon, ES-6, 4-79, 5-7
- pile driving, ES-7, 2-20, 2-21, 4-25, 4-57, 4-58, 4-59, 4-60, 4-69, 4-131, 4-132, 4-215, 4-231, 5-6, 5-9, 5-15, 5-16
- Pipeline and Hazardous Materials Safety Administration (PHMSA), ES-1, ES-8, 1-4, 1-7, 1-22, 4-138, 4-166, 4-175, 4-176, 4-177, 4-179, 4-181, 4-193, 4-194, 5-1, 5-10, 5-17
- piping plover, ES-5, 4-73, 5-6

potential to emit (PTE), 4-112, 4-113, 4-116

Prevention of Significant Deterioration (PSD), ES-7, 1-14, 1-22, 1-24, 4-111, 4-113, 4-117, 4-118, 4-123, 4-124, 4-125, 4-197, 4-227, 4-230, 5-9

public comment session, ES-4, 1-11

public scoping, ES-3, ES-4, 1-9, 1-11, 3-12, 4-102

residence, ES-6, 2-22, 4-100, 4-105, 4-127, 4-132, 4-143, 4-230, 5-8

rufa red knot, ES-5, 5-6

safe shutdown earthquake (SSE), 4-167, 4-168

saltmarsh topminnow, ES-6, 5-6

schools, ES-6, 4-97, 4-100, 4-127, 4-169, 5-8

Secretary of the Commission (Secretary), 2-19, 4-32, 4-36, 4-41, 4-55, 4-56, 4-102, 4-132, 4-133, 4-134, 4-180, 4-181, 4-191, 5-1, 5-12, 5-13, 5-14, 5-15, 5-16, 5-17, 5-28

sei whale, ES-6, 5-6

ship traffic, 4-27, 4-181, 5-16

smalltooth sawfish, ES-6, 4-74, 4-77, 5-6

snowy plover, 6, 4-79, 5-7

sound pressure, 4-58, 4-69, 4-127, 4-133, 5-6

sperm whale, ES-6, 5-6

Spill Prevention, Control, and Countermeasures (SPCC), 4-13, 4-14, 4-19, 4-20, 4-29, 4-30, 4-31, 4-38, 4-65, 4-70, 4-215, 5-2, 5-3

State Historic Preservation Office (SHPO), 1-10, 1-13, 1-18, 1-22, 4-106, 4-107, 4-108, 5-8

State Implementation Plan (SIP), 4-117, 4-227

state-listed species, 4-220, 5-7

stormwater, 1-12, 4-29, 4-30, 4-31, 4-57, 4-65, 4-70, 4-71, 4-157, 4-213

supply dock, ES-2, ES-4, ES-5, ES-7, ES-9, 1-2, 1-15, 1-17, 1-18, 1-23, 2-6, 2-7, 2-8, 2-9, 2-10, 2-13, 2-14, 2-18, 2-20, 2-21, 2-22, 3-1, 3-7, 3-10, 3-11, 3-15, 4-6, 4-7, 4-9, 4-10, 4-13, 4-18, 4-24, 4-25, 4-26, 4-27, 4-34, 4-41, 4-43, 4-44, 4-45, 4-50, 4-52, 4-56, 4-57, 4-58, 4-59, 4-60, 4-61, 4-62, 4-63, 4-65, 4-67, 4-68, 4-69, 4-70, 4-71, 4-72, 4-83, 4-84, 4-85, 4-88, 4-101, 4-

106, 4-119, 4-131, 4-198, 4-211, 4-214, 4-216, 4-218, 4-219, 4-220, 4-222, 5-2, 5-3, 5-5, 5-8, 5-9, 5-10, 5-11

tax revenue, 4-92, 4-95, 5-8

traffic, ES-5, ES-6, ES-7, ES-8, ES-9, 1-5, 1-6, 1-13, 1-17, 2-4, 2-6, 2-16, 4-26, 4-27, 4-28, 4-52, 4-63, 4-69, 4-73, 4-86, 4-87, 4-88, 4-89, 4-99, 4-100, 4-101, 4-102, 4-105, 4-119, 4-122, 4-135, 4-141, 4-142, 4-146, 4-174, 4-175, 4-193, 4-212, 4-214, 4-215, 4-218, 4-222, 4-223, 4-224, 4-225, 4-226, 4-228, 4-231, 5-7, 5-8

Traffic Impact Analysis, ES-6, 1-17, 2-16, 4-98, 4-225, 5-8

tribe, 4-107

- U.S. Army Corps of Engineers (COE), ES-1, ES-5, ES-9, 1-4, 1-5, 1-8, 1-10, 1-15, 1-17, 1-18, 1-19, 1-20, 1-23, 2-4, 2-9, 2-10, 2-14, 2-18, 2-19, 2-20, 3-8, 3-10, 4-6, 4-13, 4-21, 4-25, 4-26, 4-27, 4-32, 4-33, 4-34, 4-36, 4-38, 4-41, 4-42, 4-43, 4-44, 4-49, 4-51, 4-56, 4-57, 4-60, 4-61, 4-64, 4-68, 4-71, 4-72, 4-80, 4-82, 4-83, 4-85, 4-86, 4-101, 4-110, 4-163, 4-171, 4-173, 4-199, 4-200, 4-201, 4-202, 4-203, 4-204, 4-207, 4-208, 4-209, 4-210, 4-211, 4-213, 4-214, 4-216, 4-219, 4-220, 4-221, 5-1, 5-2, 5-3, 5-6
- U.S. Coast Guard (USCG), ES-1, ES-8, ES-9, 1-4, 1-5, 1-6, 1-7, 1-10, 1-21, 2-4, 2-6, 2-23, 3-3, 3-4, 4-15, 4-27, 4-48, 4-49, 4-64, 4-71, 4-101, 4-122, 4-135, 4-138, 4-139, 4-140, 4-141, 4-142, 4-146, 4-147, 4-148, 4-157, 4-159, 4-190, 4-193, 4-215, 5-1, 5-10, 5-27
- U.S. Department of Energy (DOE), ES-1, 1-4, 1-6, 1-10, 1-21, 3-3, 4-136, 4-179, 5-1
- U.S. Department of Transportation (DOT), ES-1, ES-8, ES-9, 1-4, 1-7, 1-17, 1-22, 2-5, 2-18, 2-23, 2-25, 3-3, 3-4, 4-118, 4-135, 4-136, 4-137, 4-138, 4-147, 4-148, 4-155, 4-156, 4-157, 4-159, 4-163, 4-166, 4-167, 4-170, 4-174, 4-175, 4-176, 4-177, 4-178, 4-179, 4-181, 4-193, 4-194, 4-195, 4-203, 4-209, 4-212, 5-1, 5-10, 5-16, 5-17
- U.S. Environmental Protection Agency (EPA), ES-1, ES-4, 1-4, 1-8, 1-9, 1-10, 1-11, 1-21, 1-23, 1-24, 3-12, 3-13, 3-14, 3-15, 4-1, 4-13, 4-15, 4-16, 4-27, 4-32, 4-36, 4-39, 4-41, 4-60, 4-

64, 4-71, 4-101, 4-102, 4-110, 4-111, 4-112, 4-113, 4-116, 4-117, 4-119, 4-120, 4-123, 4-126, 4-127, 4-128, 4-165, 4-174, 4-175, 4-176, 4-177, 4-179, 4-196, 4-202, 4-209, 4-215, 4-228, 4-230, 5-1, 5-11

U.S. Fish and Wildlife Service (FWS), ES-1, ES-5, ES-6, ES-9, 1-4, 1-7, 1-10, 1-13, 1-18, 1-19, 1-22, 4-38, 4-41, 4-51, 4-52, 4-54, 4-55, 4-73, 4-74, 4-75, 4-76, 4-77, 4-78, 4-79, 4-80, 4-90, 4-124, 4-218, 4-220, 5-1, 5-5, 5-6, 5-15

U.S. Geological Survey (USGS), 3-2, 4-2, 4-3, 4-4, 4-15, 4-21, 4-167, 4-168, 4-169, 4-172, 4-173, 4-174

U.S. Global Change Research Program (USGCRP), 4-228, 4-229, 4-230

underwater noise, 4-60, 4-63, 4-69

vibration, 4-132, 4-133, 4-167, 4-231

visual resources, 4, 1-4, 4-82, 4-88, 4-89, 4-90, 4-91, 4-196, 4-221, 5-7

water quality, 1-8, 1-12, 1-14, 1-15, 1-18, 1-22, 1-23, 4-19, 4-20, 4-24, 4-25, 4-26, 4-27, 4-28,

4-30, 4-31, 4-32, 4-64, 4-67, 4-71, 4-215, 4-217, 4-219, 5-3

Waterway Suitability Assessment (WSA), ES-8, 1-6, 1-21, 2-4, 4-101, 4-141, 4-142, 4-143, 4-146, 4-193, 5-10

West Indian manatee, ES-6, 5-6

wetland, ES-1, ES-4, ES-5, ES-7, ES-9, 1-4, 1-5, 1-9, 1-10, 1-12, 1-14, 1-15, 1-20, 1-22, 1-23, 2-9, 2-11, 2-15, 2-17, 2-18, 2-19, 3-2, 3-7, 3-8, 3-10, 3-11, 3-12, 4-6, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-25, 4-29, 4-30, 4-32, 4-33, 4-34, 4-35, 4-36, 4-37, 4-38, 4-39, 4-41, 4-42, 4-43, 4-44, 4-45, 4-46, 4-47, 4-49, 4-50, 4-51, 4-52, 4-53, 4-54, 4-55, 4-56, 4-57, 4-60, 4-61, 4-62, 4-65, 4-67, 4-68, 4-69, 4-71, 4-72, 4-73, 4-77, 4-80, 4-81, 4-82, 4-83, 4-84, 4-88, 4-91, 4-102, 4-107, 4-108, 4-131, 4-163, 4-164, 4-198, 4-199, 4-200, 4-201, 4-202, 4-207, 4-212, 4-214, 4-216, 4-217, 4-218, 4-219, 4-220, 4-221, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-9, 5-11, 5-13, 5-15

wood stork, ES-5, 5-6

APPENDIX N List of Preparers

Federal Energy Regulatory Commission

Rana, Anthony - Project Manager, Geology and Water Resources

M.S., International Development, Tulane University, 2012

Graduate Studies, Hydrogeology and Geochemistry, Oklahoma State University, 1988 B.S., Geology, New Jersey City University, 1984

Griffin, Robin - Deputy Project Manager, Land Use, Visual Resources, Socioeconomics

M.S., Environmental Management, Illinois Institute of Technology, 1999

B.A., English Composition, DePauw University, 1992

Armbruster, Ellen – Cultural Resources

M.A., Anthropology, University of Pennsylvania, 1986

B.A., Anthropology, Bryn Mawr College, 1979

Balsom, Arianne – Wildlife and Aquatic, Vegetation, Threatened and Endangered Species

M.S., Ecology and Evolutionary Biology, University of Tennessee, 2003

B.S., Ecology and Evolutionary Biology, University of Tennessee, 2000

B.A., Marine Biology, University of Tennessee, 2000

Jeudy, Harry - Air Quality, Noise, Reliability and Safety

B.S., Mechanical Engineering, The Pennsylvania State University, 2000

Peng, Andrew – Reliability and Safety

B.C.E., Civil Engineering, University of Delaware, 2014

Schreiber, Seth, P.E. – Reliability and Safety

M.S., Chemical Engineering, Washington University in St. Louis, 2006

Silvera, Liliana – Reliability and Safety

B.S., Chemical Engineering, University of Maryland College Park, 2003

Cardno, Inc.

DiSanto, Lavinia - Project Manager, Introduction, Project Description

B.A., Biological Sciences, University of Delaware, 1999

Sechrist, Kim - Deputy Project Manager, Social Sciences Task Lead, Socioeconomics

M.S., Environmental Science, Towson University, 2006

B.S., Biology, McDaniel College, 2004

Staeger, Bill - Deputy Project Manager, Alternatives, Reliability and Safety

M.S., Fisheries Biology, Oregon State University, 1974

B.A., Biology, Lafayette College, 1967

Brena, Jeanette - Air and Noise

M.S., Environmental Engineering, Washington State University, 1997

B.S., Civil Engineering, Seattle University, 1996

Brewer, John – Biological Resources Task Lead, Aquatic Resources, EFH, EFH Assessment, Alternatives, and Reliability and Safety

M.S., Marine Biology, University of Alaska, Fairbanks, 2007

B.S., Wildlife Ecology and Conservation, Animal Science, University of Florida, 1997

Briggs, Stephanie – Physical Resources Task Lead, Water Resources, Vegetation, and Wetlands B.S., Biological Sciences, Marine Biology, University of Maryland, 1998

Craig, Donald – Cultural Resources

M.S., Archeology, University of Southern Mississippi, 2011 PBAC, Anthropology, University of Southern Mississippi, 2004 B.A., English, Oregon State University, 1990

Ferris, Jennifer – Cultural Resources

M.A., Anthropology (Archaeology), Washington State University, 2008 B.A., Anthropology, University of Washington, 2001

Hess, Jonathan - Physical Resources Task Lead, Geology and Soils

B.A., Environmental Geology, Millersville University, 2008

Koonjebeharry, Amanda – Wildlife, Threatened and Endangered Species, and Biological Assessment, Cumulative Impacts

BS, Zoology & Botany, University of the West Indies, Trinidad & Tobago, 2000

Layton, Jackie – Editor

A.A.S., Architectural Engineering, Delaware Technical and Community College, 1992

Pahl, Oliver – Social Sciences Task Lead, Land Use

B.S., Environmental Economics Policy and Management, minor in Natural Resource and Environmental Law and Policy, Oregon State University, 2003

Ryan, Sally - Air Quality and Noise

B.S., Civil & Environmental Engineering, University of Wisconsin-Madison, 1985

Cardno, Inc. is a third party contractor assisting the Commission staff in reviewing the environmental aspects of the project application and preparing the environmental documents required by NEPA. Third party contractors are selected by Commission staff and funded by project applicants. Per the procedures in 40 CFR 1506.5(c), third party contractors execute a disclosure statement specifying that they have no financial or other conflicting interest in the outcome of the Project. Third party contractors are required to self-report any changes in financial situation and to refresh their disclosure statements annually. The Commission staff solely directs the scope, content, quality, and schedule of the contractor's work. The Commission staff independently evaluates the results of the third-party contractor's work and the Commission, through its staff, bears ultimate responsibility for full compliance with the requirements of NEPA.