

Comprehensive Characterization of Mixed Metal Oxide Catalysts for Enhanced Catalyst Lifetime During Biobased C₂-C₆ Oxygenates to Olefins Processes

Thermochemical Conversion

Susan Habas (NREL), Kinga Unocic (ORNL), Theodore Krause (ANL)

March 5, 2019

ChemCatBio Foundation

Integrated and collaborative portfolio of catalytic technologies and enabling capabilities

Catalytic Technologies

Catalytic Upgrading of Biochemical Intermediates (NREL, PNNL, ORNL, LANL, NREL*)

Catalytic Upgrading of Indirect Liquefaction Intermediates (NREL, PNNL, ORNL)

> **Catalytic Fast Pyrolysis** (NREL, PNNL)

Electrocatalytic and Thermocatalytic CO₂ Utilization (NREL, ORNL*)

*FY19 Seed Project

Enabling Capabilities

Advanced Catalyst Synthesis and Characterization (NREL, ANL, ORNL, SNL)

> **Catalyst Cost Model** Development (NREL, PNNL)

Consortium for Computational Physics and Chemistry (ORNL, NREL, PNNL, ANL, NETL)

Catalyst Deactivation Mitigation for Biomass Conversion (PNNL)

Cross-Cutting Support

Industry Partnerships (Directed Funding)

Gevo (NREL)

ALD Nano/JM (NREL)

Vertimass (ORNL)

Opus12(NREL)

Visolis (PNNL)

Lanzatech (PNNL) - Fuel

Gevo (LANL)

Lanzatech (PNNL) - TPA

Sironix (LANL)

ChemCatBio Lead Team Support (NREL)

ChemCatBio DataHUB (NREL)

Quad Chart Overview

Timeline

Project start date: 4/1/2018Project end date: 9/30/2019

Percent complete: 60%

	Total Costs Pre FY17	FY 17 Costs	FY 18 Costs	Total Planned Funding (FY 19-Project End Date)
DOE Funded	-	-	\$120 K	\$255 K
Project Cost Share	-	-	\$40 K	\$85 K

Partners: National Laboratories: NREL (33%);

ANL (33%); ORNL (33%)

Barriers addressed

Ct-E. Improving Catalyst Lifetime

Ct-F. Increasing the Yield from Catalytic Processes

Ct-G. Decreasing the Time and Cost to Develop

Novel Industrially Relevant Catalysts

Objective

Identify key mixed-metal oxide catalyst features that influence catalyst deactivation by leveraging synthesis and characterization capabilities and expertise across multiple DOE National Laboratories.

End of Project Goal

Next-generation MMO catalysts with tailored compositions that demonstrate enhanced stability during Gevo's ethanol to olefins (ETO) and mixed alcohols (fusel oil) to ketones (fusels) processes.

1. Approach and Relevance – The Opportunity

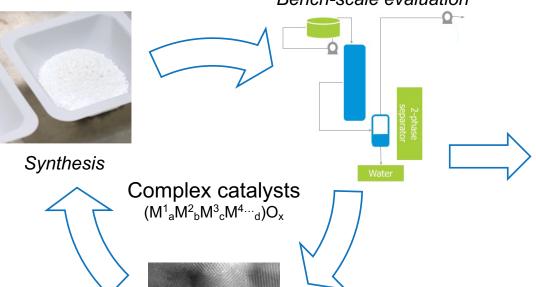
US capacity for ethanol production

15.9 Billion gallons/year

Fusel oil (mixed oxygenates)

 159 million gallons/year of low cost feedstock

- IHS Markit report, 2018



ExxonMobil, The Outlook for Energy:
 A View to 2040, 2016

Fusel oil co-process represents un-tapped revenue stream that requires catalyst development

1. Approach and Relevance – Critical Research Challenge

Catalyst Development Cycle Bench-scale evaluation

Characterization

Next-generation catalysts with enhanced stability


Understand key mixed-metal oxide catalyst features that can be manipulated to improve catalyst stability

1. Approach and Relevance – Leverage ChemCatBio Capabilities

World class capabilities and expertise directed to answer industrial catalyst development questions

Dedicated synthetic effort for next-generation catalysts through innovative syntheses

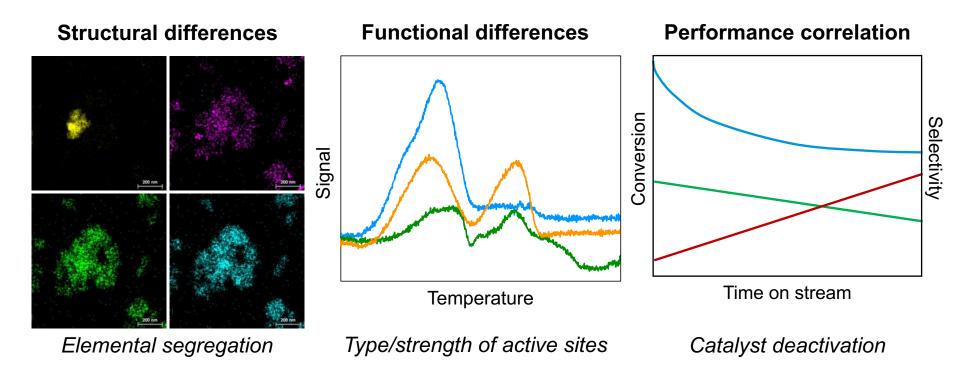
Advanced spatially resolved imaging and characterization

Identify lower cost precursors and synthesis routes

CatCost

Advanced spectroscopic techniques for *bulk and surface* structural and chemical characterization

8978



Inform computational models to predict next-generation catalysts

1. Approach and Relevance – Correlate with Performance

- Coupling multiple characterization techniques provides insight into structure and function that can be correlated with performance
- Provides opportunity to rationally design next-generation catalysts

Correlate catalyst features with performance to guide next-generation catalyst synthesis

1. Approach and Relevance – Next-generation Catalysts

Mixed-metal oxide (MMO) catalysts
Fresh, spent, regenerated

FY18 Q3: Evaluation of characterization techniques and conditions

Challenges: Oxide materials, low elemental concentrations

FY18 Q4: Detailed characterization with targeted methodologies

"The insight provided by ChemCatBio through advanced characterization techniques that are not readily available to industry has helped us to develop a better understanding of catalyst deactivation for important Gevo biofuels processes." – Gevo

FY19 Q2: Next-generation MMO catalysts with improved performance

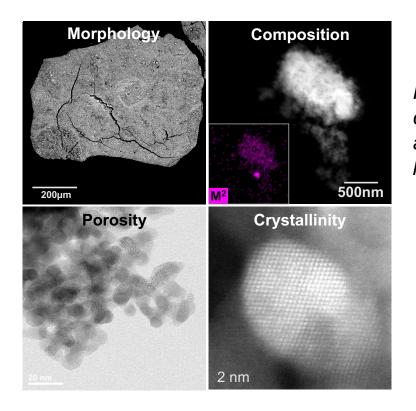
2 Cycles of catalyst development

Insight gained?

FY19 Q1: Correlation with performance data from Gevo

2. Technical Accomplishments – Detailed Characterization

Mixed-metal oxide (MMO) catalysts
Fresh, spent, regenerated

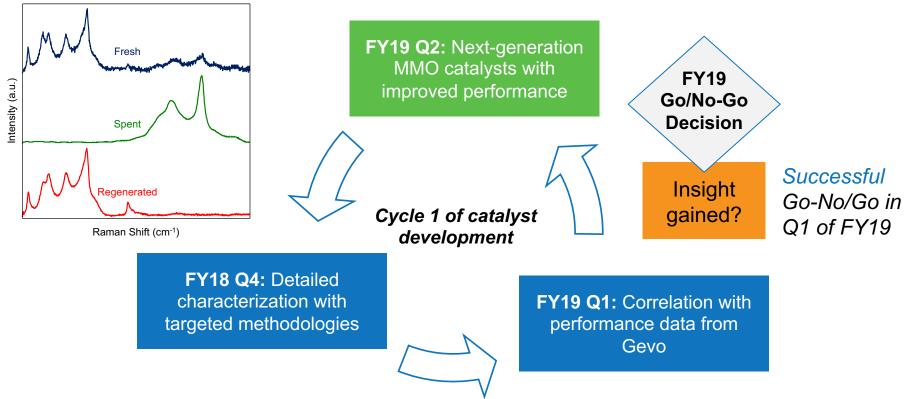


Series of catalysts for both Gevo's ETO and fusels processes

FY18 Q3: Evaluation of characterization techniques and conditions

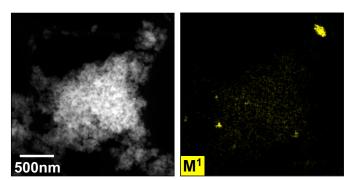
Multiple techniques across 3 DOE National Laboratories

Rigorous characterization across multiple length scales

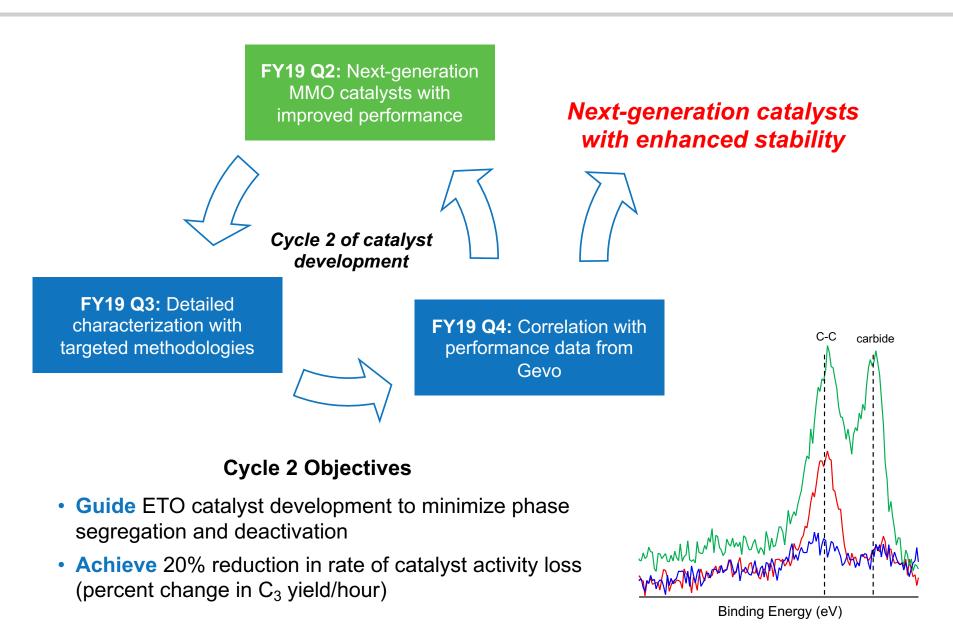

FY18 Q4: Detailed characterization with targeted methodologies

- Spatially-resolved composition
- Surface area and pore volume
- Morphology
- Crystal phases

- Coordination environment
- Surface chemistry
- Active sites type
- Active site strength

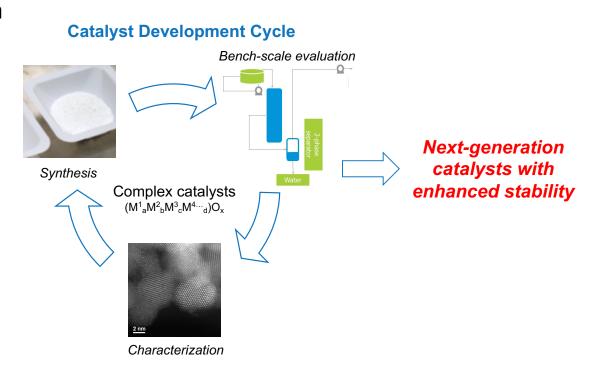

Identified characterization techniques and conditions that provide fundamental insight into MMO catalysts

2. Technical Accomplishments – Correlation with Performance



Cycle 1 Outcomes

- Identified synthesis-dependent structural characteristics
- Confirmed no selective leaching of critical elements
- Correlated phase-segregation with deactivation


3. Future Work

Summary

Goal: Understand key mixed-metal oxide catalyst features that can be manipulated to improve catalyst stability

- Leveraged characterization capabilities and expertise across ChemCatBio Consortium
- Identified characterization techniques and conditions to provide fundamental insight into catalysts
- Correlated catalyst features with performance to guide next-generation catalyst synthesis

Impact: Next-generation catalysts with tailored compositions that demonstrate enhanced stability for Gevo's ETO and fusels processes

Acknowledgements

NREL

Matthew Yung
Anne Starace
Anh To
Frederick Baddour

ORNL

Kinga Unocic Tracie Lowe Tom Geer Harry M. Meyer III

Gevo

Jonathan Smith

ANL

Theodore Krause Fulya Dogan-Key Vic Maroni

This work was performed in collaboration with the Chemical Catalysis for Bioenergy Consortium (ChemCatBio, CCB), a member of the Energy Materials Network (EMN)

This work was supported by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office under Contract no. DE-AC36-08-GO28308 with NREL, DE-AC02-06CH11357 with ANL, and DE-AC05-00OR22725 with ORNL

