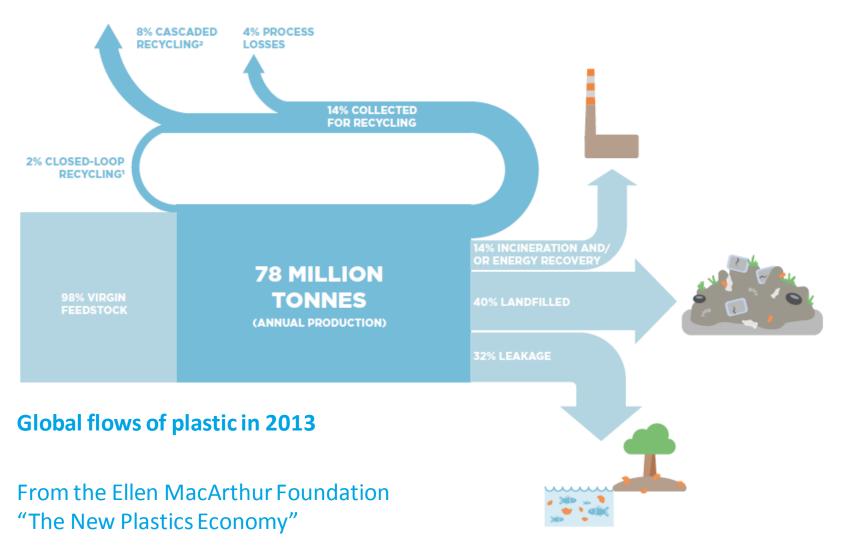
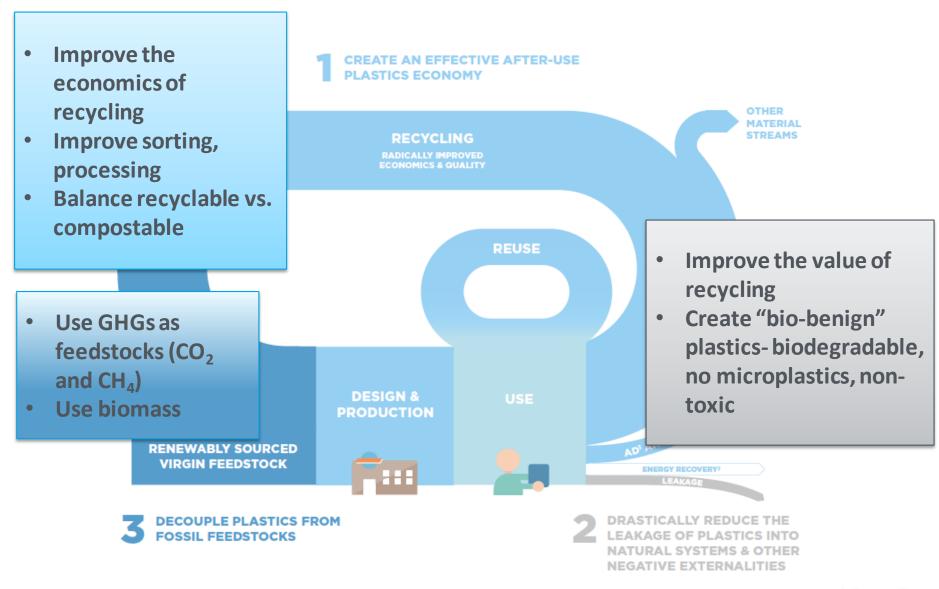
BIOENERGY TECHNOLOGIES OFFICE (BETO)

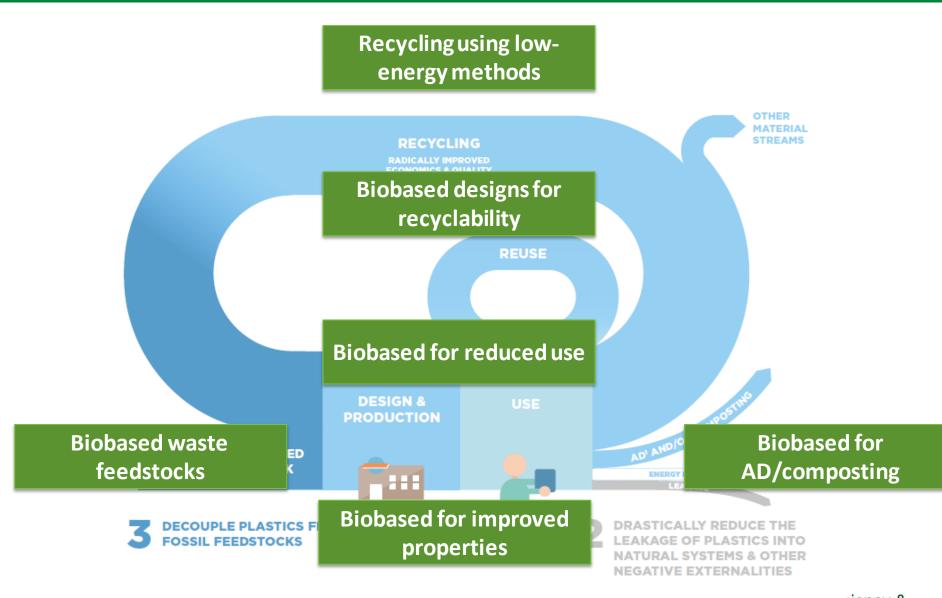

Recycling and Upcycling Plastics

March 6th 2019

Jay Fitzgerald

BETO Peer Review


The Challenge: A linear carbon economy for plastics


- 1 Closed-loop recycling: Recycling of plastics into the same or similar-quality applications
- 2 Cascaded recycling: Recycling of plastics into other, lower-value applications

Source: Project Mainstream analysis - for details please refer to Appendix A in World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, *The New Plastics Economy — Rethinking the future of plastics*, (2016, http://www.ellenmacarthurfoundation.org/publications).

The Solution: A circular carbon economy for plastics

The BETO Opportunity: A circular carbon economy

1 Anaerobic digestion

iency & Energy

Why are biobased approaches good for a circular carbon economy?

- Biobased feedstocks are renewable, and when collected properly, are sustainable
- Biobased encourages creative design and improved properties: capitalize on the highly functionalized nature of biomass to access products that would be too expensive to make from petroleum (e.g. PDO)
- Biobased can play a role in recyclability: designs for modern recyclables include highly functionalized monomers (e.g. vitrimers)
- Biobased can be amenable to anaerobic digestion or composting (e.g. PLA)
- Biobased approaches to plastics degradation can be used for breaking down intractable mixtures

Biobased waste feedstocks

Biobased for reduced use

Biobased for improved properties

Biobased for recyclability

Biobased for AD/composting

Recycling using lowenergy methods

Plastics

Design

Deconstruction

Opportunities for BETO in Design and Deconstruction

Opportunity: Design

Goal: New biomass-derived plastics with:

- Superior properties
- Recyclability
- Less material

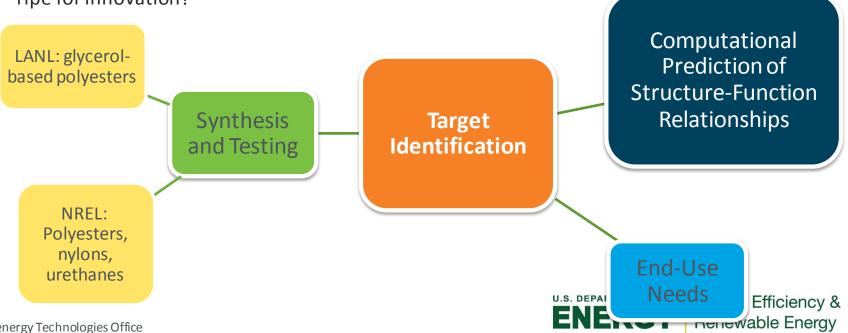
enzymatic hydrolysis


http://hillmyer.chem.umn.edu/publications

Opportunity: Deconstruction

Goal: New chemical and biological methods to break plastic down and upgrade it into new materials

Environ. Sci. Technol. 2014, DOI: 10.1021/es504038a



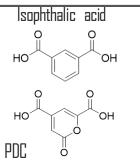
Design Opportunity: Performance Advantaged Bioproducts

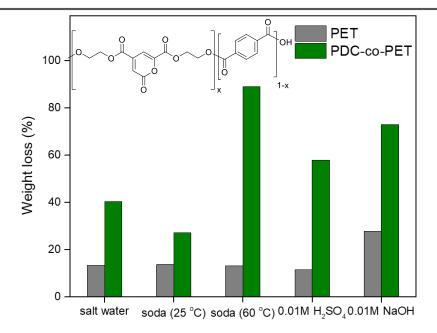
- FY18 began \$1.9M mini consortium at NREL to identify novel, performance advantaged bioproducts; FY19 introduced LANL + NREL partnership
- Three focus areas that represent workshop stakeholder concerns:
 - Computational modeling to predict how biobased compounds will behave
 - High throughput screening of biobased compounds to understand what can be easily made and what
 - End Use Needs- can we look at existing products and assess what is ripe for innovation?

Workshop in June, 2017; report PUBLISHED (check **BETO** website)

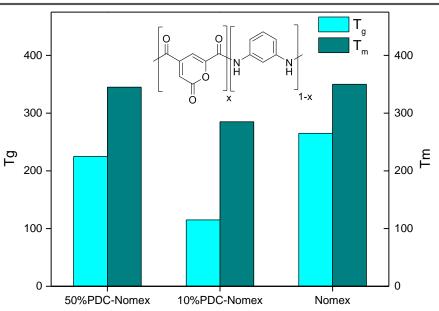
Design Opportunity: Performance Advantaged Bioproducts

Soda bottles are thicker than water bottles in part because PET has a low O₂ barrier




Less plastic -> less waste

New properties -> new applications


Replacing isophthalic acid in PET and polyaramids

- Isophthalate used to tune PET crystallinity, for thermal barrier in Nomex
- PABP need (PET): Enabling facile chemical recycling
- PABP need (polyaramid): Melt processing is challenging
- Hypothesis: Lactone in PDC can offer route to facile chemical recycling
- **Bio-based monomer**: Pyrone-dicarboxylic acid (PDC) for isophthalate

 Lower resistance of PET-PDC enables facile recycling at same properties

Consistent thermal properties with Nomex, lower T_g leads to easier processing

Design Opportunity: Performance Advantaged Bioproducts

ß-ketoadipic acid as a substitute for adipic acid

Starting Diacid/Diester	Glass Transition Temperature	Melting Temperature	$M_{ m v}$ *10-4 g /mol	Water Permeability g*mm/m²*day
Beta-keto Adipate	130	400*	5.2	8.0
Adipic Acid	60	260	3.3	10.1

Replacing adipic acid with ß-ketoadipic acid (derivable from sugars or aromatics) increases thermal properties, molecular weights, and lowers water permeability

Ketone likely induces rigidity in the backbone; currently employing computational approaches (molecular dynamics) to understand fundamental reason for property improvements Energy Efficiency & Johnson et al Uncoming Renewable Effective

Beckham et al.

Future Directions in Plastics Design at BETO

Questions moving forward:

- What can we make when we are no longer limited by the constraints of a petroleum starting material? What existing products are ripe for innovation?
- How do we design the plastics of the future to make recycling efficient and cost-effective?
- How do we design plastics that enable us to use less?
- How do we prioritize recyclability vs biodegradability vs less-use vs renewable?
- Can we design "bio-benign?" (recyclable, biodegradable, no microplastics, non-toxic sub-components)

Future Directions:

- PABP Consortium is looking at plastics design, but that is not the exclusive focus of the group
- Last week BETO released an SBIR topic on plastics design
- Plastics design will continue to be a priority for BETO

Opportunities for BETO in Design and Deconstruction

Opportunity: Design

Goal: New biomass-derived plastics with:

- Superior properties
- Recyclability
- Less material use

http://hillmyer.chem.umn.edu/publications

Opportunity: Deconstruction

Goal: New chemical and biological methods to break plastic down and upgrade it into new materials

Environ. Sci. Technol. 2014, <u>DOI:</u> 10.1021/es504038a

Deconstruction Opportunity: mixed plastics

Materials: C-C Plastics

Materials: Polyesters

- PET
- Blends

Materials: Textiles & Foam

 Nylons, lactams, polyamides, polyurethanes

Challenges:

- Selective C-C chemistry
- Crystallinity
- Contamination
- Breakdown rate

Challenges:

- Selective C-O chemistry
- Contamination/ mixed streams
- Breakdown rate/ extent
- Crystallinity

Challenges:

- Selective C-O,C-N chemistry
- Contamination/ mixed streams
- Breakdown rate/ extent

Energy Efficiency & Renewable Energy

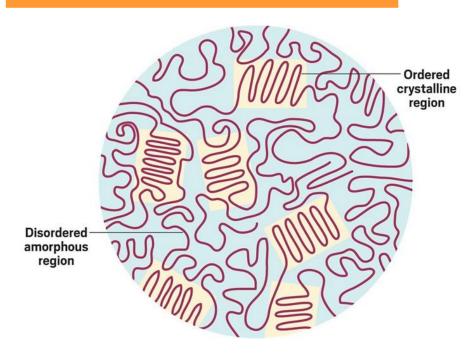
Challenge: Selective C-O, C-N chemistry

- Need to break plastics down into tractable streams
- Maintain key monomer functionality

BETO competency: commercially-relevant chemistry

Microb. Biotechnol. 2015, DOI: 10.1111/1751-7915.12312

Challenge: New, selective C-C chemistry



- Selective C-C bond breaking chemistry is difficult
- Cannot directly reform monomers

Environ. Sci. Technol. 2014, <u>DOI:</u> 10.1021/es504038a

BETO competency: novel organisms and catalysts

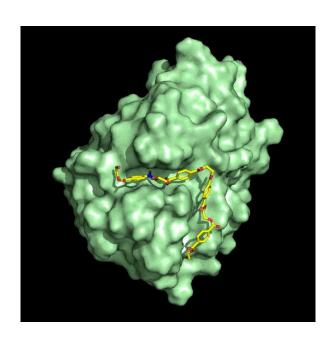
Challenge: Crystallinity

Enzymes and catalysts
 can have difficulty
 accessing highly ordered
 crystalline polymers
 leading to slow and
 incomplete breakdown

BETO competency: lessons from cellulose

https://cen.acs.org/environ me nt/su stainability/Plastics -recy cling-mi crobe s-wor ms -furt her/96/i25

Challenge: Mixed Streams

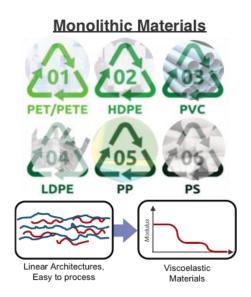


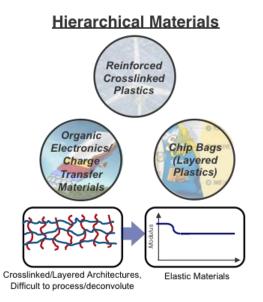
Dirty Streams
contain catalyst
poisons and
complex
substrate
mixtures

The Guardian, April 16 2018

BETO competency: heterogeneous biomass valorization

Challenge: Breakdown rate/completeness

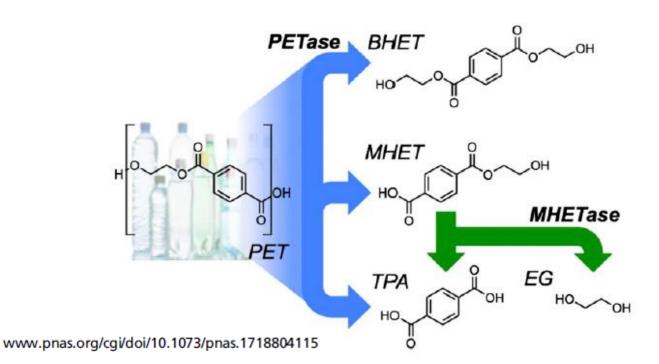

- Current enzymes are too slow to be economically competitive
- Plastics are "new," evolutionarily speaking, so enzymes and organisms have not had incentive to evolve


BETO competency: enzyme engineering

Watch a 360° rotation of the crystal structure of the PET-degrading enzyme (green space fill) with PET (yellow, blue, and red stick structure) docked in the active site.

Challenge: Thermosets

Can't simply melt hierarchical materials to recover monomers


BETO competency: New polymer design

https://cen.acs.org/environment/sustainability/Plastics-recy cling-microbes-worms-further/96/i25

AOP Portfolio Seed FY19

- Engineering better plastic degradation enzymes
- Builds off of highly-publicized work at the University of Portsmouth and NREL

Future Directions in Plastics Deconstruction at BETO

Questions Moving Forward:

- What is the best combination of chemical and biological treatment of plastics to maximize stream value?
- How tolerant to contaminants can these treatments be?
- How do we design a system to handle extremely heterogeneous streams?

Future Directions:

- Thinking of plastics as feedstocks
- Current SBIR topic on plastics deconstruction and upcycling

