#### A New Carbon Economy on the Horizon





## The Carbon Based Economy

A carbon based economy is an opportunity. Engineering systems to use renewable carbon consistently and efficiently can enable an economy that functions as a tool to manage carbon on an industrial scale.



## Carbon sources

- Fossil
  - Coal, oil, natural gas, tar sands
- Biomass
  - Agricultural and forest residues
  - Dedicated energy crops
  - Algae
- Waste
  - Industrial/utility waste gases
    - CO, CO<sub>2</sub>
  - Biogas
    - Landfills
    - Digesters
  - Biosolids
  - Sorted MSW
    - Construction and demolition waste
    - Yard waste
    - Plastic
- Atmospheric CO<sub>2</sub>





## Utilizing Carbon sources

Office of

- Fossil
  - Coal, oil, natural gas, tar sands
- Biomass
  - Agricultural and forest residues
  - Dedicated energy crops
  - Algae
- Waste
  - Industrial/utility waste gases
    - CO, CO<sub>2</sub>
  - Biogas
    - Landfills
    - Digesters
  - Biosolids
  - Sorted MSW
    - Construction and demolition waste
    - Yard waste
    - Plastic
- Atmospheric CO<sub>2</sub>



ENERGY EFFICIENCY & RENEWABLE ENERGY

FOSSIL ENERGY

Office of







## BETO and Carbon Management

- BETO's current efforts in carbon management fall into two categories
  - Maximizing efficient use of renewable carbon resources
    - Energy security
    - Economic development
    - Environmental service
  - Identifying more domestic carbon resources and further closing the carbon cycle
    - Opportunity feedstocks (wet and dry wastes, plastics, etc.)
    - Engineer new systems that directly remove GHGs from the air



• The objective of BETO's carbon management efforts are to optimize the use, re-use, and recycle of carbon sources to add value to the bioeconomy, minimize wasted emissions of carbon to the atmosphere, and maximize the utilization of renewable carbon in biofuels and bioproducts.





# Why is BETO Expanding our scope?

- Part of our continual efforts to maximize environmental, economic and social benefits of the technologies we develop
  - Resource-sparing (land, water, fertilizer)
  - Environmental service (e.g. wet and plastic waste)
  - Productive use of waste gases
- Leverage expertise in carbon manipulation and deconstruction of complex polymers
- Maximize utilization of existing core capabilities, and strategically add new capabilities
- Broadening our view of potential carbon sources
- Expanding U.S. regions that can contribute to the bioeconomy
- Help meet the advanced biofuel standards in RFS and LCFS









# **BETO** activities along the carbon life cycle



## Carbon Life Cycle – Capturing or avoiding CO2 or GHG emissions





## Carbon Life Cycle – Enhancing Carbon Re-Use





## Processing carbon resources into more conversion-ready feedstock









## BETO Efforts in CO<sub>2</sub> utilization

## Non-biological CO<sub>2</sub> activation

#### **Enabling Studies:**

**2.1.0.304** <u>Feasibility Study of Utilizing Electricity to Produce Intermediates from  $CO_2$  – TEA and LCA overview of the various technologies available to convert  $CO_2$  to intermediates</u>

**2.3.1.316** <u>CO<sub>2</sub> Utilization: Thermo- and Electro-catalytic routes to fuels and chemicals</u> – determining the best practices for baselining CO<sub>2</sub> catalysis and determining design strategies for commercial membrane electrode assemblies.

#### Electrocatalysis and thermocatalysis:

 SBIR Phase II - <u>Utilization of Waste CO<sub>2</sub> to Make Renewable Chemicals and Fuels</u> (Opus12)
 SBIR Phase I - <u>Excess Electric Power-Driven Conversion of Carbon Dioxide to Chemicals</u> (Precision Combustion)
 SBIR Phase II - <u>Renewables-Driven Production of Organic Acids from Industrial CO<sub>2</sub> Waste Streams</u> (Skyre) - FY17 and FY18 SBIR awards for CO<sub>2</sub> catalysis

**2.3.1.317** <u>Electrocatalytic upgrading of  $CO_2$  to fuels and C2+ chemicals</u> –  $CO_2$  conversion to ethanol using Cu catalyst on carbon nanospikes

**2.5.4.707** <u>Catalyst Development for Selective Electrochemical Reduction of  $CO_2$  to High-value Chemical Precursors</u> <u>w/Opus-12</u> – CRADA leveraging CCB to help catalyst development for  $CO_2$  conversion to CO



## BETO Efforts in CO<sub>2</sub> utilization

Engineering of microorganisms to upgrade CO<sub>2</sub> or intermediates derived from CO<sub>2</sub>

**2.3.2.106** <u>CO2 valorization via rewiring of the carbon metabolic network</u> – Engineering C. ljungdahli to biologically convert  $CO_2$  and  $H_2$  to 3HB

BRDi Engineered reversal of the β-oxidation cycle in clostridia for the synthesis of fuels and chemicals
 Agile Biofoundry CRADA Progress towards a new model chemolithoautotrophic host
 Agile Biofoundry CRADA Data Integration and Deep Learning for Continuous Gas Fermentation Process Optimization

 - 3 projects improving metabolic engineering capabilities for CO conversion

2.3.2.111 Improving formate upgrading by Cupriavidus necator

2.3.2.112 Enhancing Acetogen Formate Utilization to Value-Added Products

2.3.2.113 Synthetic C1 Condensation Cycle for Formate-Mediated ElectroSynthesis

- 3 projects improving metabolic engineering for formate/methanol conversion

#### CO<sub>2</sub> conversion to pipeline-grade methane:

5.1.3.102 Biomethanation to Upgrade Biogas to Pipeline Grade Methane

5.1.3.104 Modular Microbial Electromethanogenesis Flow Reactor for Biogas Upgrading

2.3.2.700 Integrating electrolysis and biomethanation for long-term energy storage

- 3 collaborations w/labs (NREL/LLNL) and SoCal Gas for energy storage



## BETO Efforts in CO<sub>2</sub> utilization

Integrated processes for CO2 reduction followed by biological intermediate upgrading

 BEEPS FOA Integrating Chemical Catalysis and Biological Conversion of Carbon Intermediates for Deriving Value Added Products from Carbon Dioxide – Johns Hopkins University
 BEEPS FOA Development of a scalable, robust electrocatalytic technology for conversion of CO<sub>2</sub> to formic acid via microstructured materials – Montana State University
 BEEPS FOA Production of bioproducts from electrochemically-generated C1 intermediates – Lanzatech - 3 awards for generating C1 intermediates and biologically upgrading to fuels and products

SBIR Award Phase I CO<sub>2</sub> to Chemicals: A Hybrid Process for Bioproduct Synthesis From CO<sub>2</sub>
 SBIR Award Phase I Electrochemical conversion of CO<sub>2</sub> to CO for use as a fermentation feedstock

 FY18 SBIR awards for generating C1 intermediates and biologically upgrading to fuels and products

**5.1.3.101** Integration of Flue Gas CO<sub>2</sub> Electrolysis with Microbial Syngas Fermentation - Biopower lab call award for upgrading lower concentration dirty CO<sub>2</sub>





## Carbon Management Highlights at Peer Review

- FY14/15 Targeted Algal Biofuels and Bioproducts FOA included projects to improve carbon dioxide utilization efficiency; Global Algae Innovations and Arizona State University presenting in the Algae session starting at 1 PM on Thursday.
  - ASU's "Atmospheric CO2 Capture and Membrane Delivery" @ 1:00p
    - Working on atmospheric CO<sub>2</sub> capture, enrichment, and delivery via integration of moisture-swing sorption and membrane carbonation to increase biomass productivity.
  - GAI's "Algae Production CO<sub>2</sub> Absorber with Immobilized Carbonic Anhydrase" @ 1:30p
    - Working to increase algal biomass yield by deploying an innovative system to absorb CO<sub>2</sub> from flue gas using immobilized carbonic anhydrase. The project site is in Kauai, HI, at a 33-acre algae facility adjacent to a power plant.
  - Both of these project teams have won FY18 FOA awards to continue their research in these topics.
- FY18 Efficient Carbon Utilization in Algae Systems FOA recipients had posters at Tuesday evening session.



Energy Efficiency & Renewable Energy

#### Algal Cultivation for Carbon Capture and Utilization Workshop

Hosted the **Algal Cultivation for Carbon Capture and Utilization Workshop** May 23-24, 2017 in Orlando, FL

## Over 80 attendees:

- Discussed innovative technologies and business strategies for growing algae on CO<sub>2</sub> emissions
- Toured an algae research project at a coal-fired power plant
- Proposed a framework to support federally funded algal biofuels research in real-world relevant carbon capture and utilization conditions.
- Engineering and biological solutions are needed to increase the efficiencies of CO<sub>2</sub> delivery and uptake by the algae, and it is important to show that algae can thrive on these emissions while reducing costs of production.





# THANK YOU

