ADVANCED METHODS FOR MANUFACTURING ANNUAL PROGRAM REVIEW

PULSED THERMAL TOMOGRAPHY NONDESTRUCTIVE EVALUATION

PETER KOZAK¹, SASAN BAKHTIARI¹, BORIS KHAYKOVICH⁴, BILL CLEARY⁵ ALEXANDER HEIFETZ¹, J.G. SUN¹, TOM ELMER¹, DMITRY SHRIBAK^{1,2}, BRIAN SABORIENDO^{1,3},

Laboratory, ⁵Westinghouse Electric 1Argonne National Laboratory, ²University of Chicago, ³DePaul University, ⁴MIT Nuclear Reactor

OUTLINE

- Overview
- Objectives
- Approach
- Findings
- Future plans
- Expected applicability to commercial nuclear power

OVERVIEW, OBJECTIVES, APPROACH

OVERVIEW

- NEET AMM Project started in October 2018
- 3 years duration
- Develop pulsed thermal tomography (PTT) for in-service non-destructive examination (NDE) of AM metallic components
- Project centered at ANL with MIT Reactor and Westinghouse collaborators

MIT	ANL	Developmen
	MIT Reactor	ent Validation
GPI Industries	Westinghouse	Specimens

OBJECTIVES

- Develop low-cost pulsed thermal tomography (PTT) system for components in-service NDE of AM stainless steel and Inconel materials and
- camera to low-cost system based on compact camera Transition from laboratory system based on high-end
- Compact IR camera is less expensive alternative to imaging IR fiber bundle
- Validation studies to be performed at MIT Reactor
- Design new PTT system subject to spatial constraint of
- Demonstrate performance at MITR

Principle of PTT operation

- Apply a pulse of thermal energy to surface with flash lamp
- Balcar ASYM 6400 source delivers 6400J/2ms
- Record surface temperature transients T(x,y,t) with IR camera
- FLIR SC 4000 IR camera 3-5µm with 420fps 320x256 pixels array

Existing PTT system

Example: image flat bottom holes (indentations) in hastelloy plate

Pattern of indentations

Image from flat side

Principle of PTT operation

- Internal thermal resistance changes local surface temperature T(x,y,t) time decay
- Relate time t to depth z using established model of heat diffusion in 1-D e.g. for constant diffusivity $z=(\pi\alpha t)^{1/2}$
- Depth estimation requires knowledge of diffusivity α
- Obtain 3-D reconstruction (spatial and depth) of material effusivity $e = (
 ho c k)^{1/2}$
- p is the density, c is the specific heat, k is the thermal conductivity

of predicted depth map Examples of 3-D reconstruction of ceramic matrix composite plate with holes (3) Surface elevation plot and (b) Vertical slice

Technical merits of PTT for in-service applications

- Non-contact
- Current laboratory system operates at standoff distance of one foot
- One sided measurements
- Can be made compact and low-cost
- LWIR (7µm to 14µm) small form factor cameras are commercially available
- Fast operation
- Typical laboratory scans take ~10s
- Use ANL algorithm for 3-D effusivity reconstruction

Summary to-date

- Evaluating capability in tomographic imaging of stainless steel and Inconel metallic samples
- AM Westinghouse nozzle plate
- Flat bottom hole stainless steel Inconel and hastelloy plates
- Explored data visualization options
- Designing low-cost compact system for in-service
- Working with FLIR to identify technology options
- Coordinating with MITR to develop system requirements

Imaging of Westinghouse AM nozzle plate

Inconel 718 nozzle plate (8"x8"x3/4")

Pulsed Thermal Tomography Setup

Westinghouse AM Inconel 718 nozzle plate

3-D reconstructions

Thickness L=17mm

Test duration t_{test} = 20.93s,

Thermal diffusivity α = 6.25 mm²/s,

Optical depth D= $(\pi^*\alpha^*t_{test})^{1/2}$ = 20.3mm

Westinghouse AM Inconel nozzle plate

3-D reconstructions

Imaging of Westinghouse AM IN718 nozzle plate

3-D reconstructions and data visualizations with MATLAB

Westinghouse AM IN718 nozzle plate 3-D imaging with ImageJ

lmaging of flat bottom holes (indentations) in SS316 and IN718 plates

from flat side

Note: depth is measured from undrilled flat surface

All dimensions in mm

Materials: SS316 and N718

Imaging flat bottom holes in SS316 plate

Imaged area

Thickness L=6.22mm
Test duration t_{test} = 5.89s
Estimated diffusivity α = 3.72 mm²/s
Imaging depth D= $(\pi^*\alpha^*t_{test})^{1/2}$ = 8.3mm

 $\frac{1}{2}$

Imaging flat bottom holes in SS316 plate

Cross-section images

FINDINGS Imaging flat bottom holes SS316 plate

Imaged area

Imaging flat bottom holes in SS316 plate

FINDINGS Imaging flat bottom holes SS316 plate

Imaged area

Preliminary evaluation of porosity detection with PTT

Filled holes in Ni200 plate with Ni200 50µm powder to simulate porosity

Imaging of Ni200 plate with flat bottom holes filled with Ni powder

3-D reconstruction qualitative results

PLANS FOR FY19

Damage detection calibration

- Evaluate PTT system performance in detection of porosity regions
- Working with GPI to develop AM stainless steel and Inconel specimens with

porosity inclusions

PLANS FOR FY19

Challenges of PTT with small cameras

- High-end cameras
- 100Hz to KHz frame rate
- Cooled photon counting detection

- Compact cameras ~2"x2"x4" and smaller
- Uncooled microbolomer detector
- Frame rate <60Hz

Preliminary evaluation of PTT imaging at low frame rate

Comparison of SS316 flat bottom holes reconstruction with 200Hz and 60Hz

PLANS FOR FY19

Design in-service NDE system

- Working with MITR to identify best penetration tunnels for validation experiments
- Identify size limitations for compact thermal camera
- AM parts will be inserted into MITR for imaging with compact PTT

Cutaway of MITR showing radial beam ports

SUMMARY

- Demonstrated capability of tomographic imaging of stainless steel and Inconel specimens
- Westinghouse AM nozzle plate
- Flat bottom hole stainless steel and Inconel plates
- Plan to submit preliminary results to QNDE and ASME conferences
- Plan to development of low-cost system for NDE
- Evaluation studies will be conducted with compact thermal camera
- Coordinating validation studies with MIT Nuclear Reactor

NUCLEAR POWER EXPECTED APPLICABILITY TO COMMERCIAL

- Deliver low-cost system for in-service NDE of reactor components
- Demonstrate performance in research reactor environment
- Plan to discuss ASME codes at relevant meetings

