U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

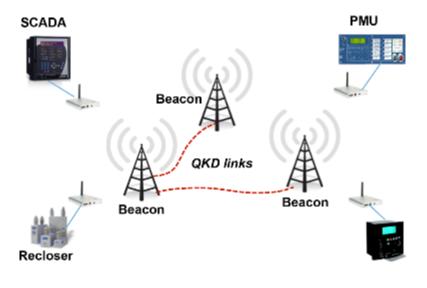
Timing Authentication Secured by Quantum Correlations (TASQC)

Oak Ridge National Laboratory (ORNL)

Phil Evans

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018


Summary: TASQC

Objective

 Provide an energy-centric secure timing distribution and message broadcast capability that complements, and could replace, GPS

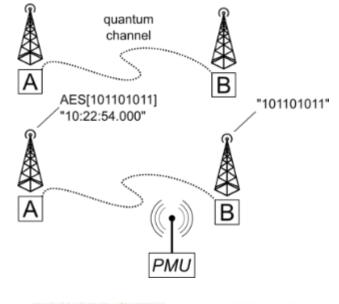
Schedule

- Start: January 2015
 End: September 2019
- IAB Formed: Q3 FY15
- Base system demo: Q4 FY15
- Message passing: Q1 FY16
- 2-way time transfer: Q2 FY16
- Demonstrations: ongoing
- Capabilities realized: Secure time distribution and synchronization for timeaware/sensitive grid networking and applications

Total Value of Award:	\$ 2.998M
Funds Expended to Date:	% 99
Performer:	Oak Ridge National Laboratory
Partners:	Pacific Northwest National Laboratory Sandia National Laboratories University of Texas Austin Qubitekk, Inc. Electric Power Board (EPB)

Advancing the State of the Art (SOA)

There is no alternative source of secure time distribution for the grid


- GPS is widely used. GPS is vulnerable to spoofing!
- eLORAN can provide < 100 ns timing. Additional trials scheduled for 2019/2020

GPS is vulnerable because the signals are well known

- One-way time distribution will **always** be susceptible to reply attacks
- Security requires no *a priori* information on signal structure \rightarrow total randomness
- Can true randomness be used for secure time distribution with 2-way communication?

TASQC – Timing Authentication Secured by Quantum Correlations

- Backbone of QKD-connected base stations generate and share random keys
- Trusted clock source & time synchronization between base stations – act as verifiers
- Base system technology to demonstrate variety of protocols on – *timing, message passing, etc.*

Advancing the State of the Art (SOA) 2

• Feasibility: proof-of-concept has been demonstrated

- Requires existing dark fiber optic and RF/wireless infrastructure
- Benefits:
 - Time signals are encrypted with quantum keys and one-time pad: secure
 - The stakeholder controls the system: **no reliance on third parties**
 - Flexibility: not just limited to time
 - Secure messaging capability, i.e., notifications of leap seconds
 - Increasingly complex suite of protocols for YOUR needs

Operational requirements:

- Meets 1µs timing requirement for PMUs IEC C37.118-2005
- Has IEEE-1588 and IRIG-B timing output for distribution to existing devices

• Cybersecurity:

- Resilience against GPS interference and spoofing; satellite & space weather events

Progress to Date

- 3Q FY15: Industry Advisory Board (IAB) Formation
- 4Q FY15: Base System
 - Task 1.8 (Milestone) Base Protocol Burn-in Testing @ ORNL \checkmark
 - Task 1.11 (Go/No Go) Prototype Testing @ PNNL \checkmark
- FY16: Protocol Demos & Hardware Modifications
 - Task 2.1 Encrypted code word \checkmark
 - Task 2.2 Anti-Replay attack (aka 2-way secure time distribution) \checkmark
 - Task 2.4 Communications task √
- 1Q FY17: IEEE-1588 & IRIG-B output
 - IAB recommendation
- 3Q FY17: Demo with Chip-scale QKD systems
 - Conducted on-site at SNL
- FY18: Preparations for final utility demonstrations

Challenges to Success

Mutual Understanding – Needs & Technologies

- Aligning needs and requirements
- Multi-faceted team with broad knowledge base
- Outreach, webinars, meetings

Absolute trust in GPS

- "GPS is vulnerable and you need alternatives!"

Availability of Suitable Optical Fiber Infrastructure

- Quantum requires low-loss, dark/unlit fiber runs.
- No optoelectronics

Use of 'open' RF bands, e.g., 900 MHz ISM, is noisy

- Focus on RF development: work on error correction, spread-spectrum techniques to recover signal
- Partnerships with utilities with owned spectrum

Collaboration/Technology Transfer

- Software developed is open source
- Qubitekk is our industry partner
 - TASQC is compatible with current and future Qubitekk systems
- Asset owners are most likely end users
- Plans to gain industry acceptance:
 - Utility-hosted field tests and demonstrations
 - Adopting current standards
 - Enabling technology for other grid applications

