U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Autonomous Tools for Attack Surface Reduction Iowa State University

Manimaran Govindarasu

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

Summary: Autonomous Tools for Attack Surface Reduction

Objective

Assessment and Reduction of Attack
Surface within the electric power grid
control environment

Schedule

- October 1, 2016 September 30, 2019
- Key deliverables and dates
 - Autonomous Attack Surface Reduction Framework (M2 – Tasks 2.1: Completed)
 - Attack Surface Analysis Tools & Evaluation (M3 – Tasks 2.2, 2.4: Completed)
 - Attack Surface Reduction Tools & Evaluation (M6 - Tasks 2.3, 2.4: Completed)
- What capabilities will result?
 - Attack Surface Host Analysis (AHA) Tool
 - Moving Target Defense for EDS networks
 - SIEM-based Anomaly Detection for SCADA
 - Anomaly Detection Algorithms for PMU data

Advancing the State of the Art (SOA)

• **Describe current "state of the art"** EDS depends heavily on vulnerable legacy software, but there are limited tools to analyze software "attack surface"

ICS/SCADA-specific techniques & tools are lacking

Describe the feasibility of your approach
2-stage modular architecture: coupled or decoupled
deployment

Quantitative methodology and metrics for surface analysis

Modular techniques and toolset for attack surface reduction

 Describe why your approach is better than the SOA

Most tools look primarily for "vulnerabilities", not assessing software's secure ecosystem and complexity

Describe how the end user of your approach will benefit

Vendors can use AHA to improve the security lifecycle and verify good security practices

Asset Owners can use AHA to validate the quality of software during acquisition process

Attack Surface Reduction Tools are tailored for SCADA

• Describe how your approach will advance the cybersecurity of energy delivery systems

Widespread use of AHA will address challenges of legacy software lacking adequate security protections.

U.S. DEPARTMENT OF

OFFICE OF

CYBERSECURITY, ENERGY SECURITY,

AND EMERGENCY RESPONSE

Challenges to Success

Dynamic and evolving nature of cyber threats

Develop pragmatic methodology and metrics for attack surface analysis & reduction

•Move from qualitative approaches towards more quantitative approaches aligning with industry best practices

• Factors and complexities in analyzing and reducing attack surface for EDS

•Focus on host-based attack surface analysis, Moving Target Defense, Domain-specific Anomaly Detection to gain industry acceptance

Deployment challenges with regards to integration of cybersecurity technologies into grid's legacy operational environments

Autonomous Tools for Attack Surface Reduction

- Task 2.2 Attack Surface Analysis algorithms and tools
- Task 2.3.1 Attack Surface Reduction tools at Substation level
- Task 2.3.2 Attack Surface Reduction tools at Wide-area Network level
- Task 2.3.3 Attack Surface Reduction tools at Control Center level

Progress to Date

Major Accomplishments

Milestone	Completion	Verifications
M1. Task 1.4 – Completion of Industry Advisory Board Creation	9/30/2017	* Informing CEDS Project Manager of the IAB formation.
M2. Task 2.1 – Completion of Autonomous Attack Surface Reduction Framework	9/30/2018	Submitted:
M3. Task 2.2 – Completion of Attack Surface Analysis algorithm prototypes	3/31/2018	Published "Ali Tamimi, Ozgur Oksuz, Jinyoung Lee, Adam Hahn. Attack Surface Metrics and Privilege-based Reduction Strategies for Cyber-Physical Systems. 6 Jun 2018. https://arxiv.org/abs/1806.06168"
M4. Task 2.3 – Completion of Attack Surface Reduction algorithm prototypes	3/31/2018	Developed data analytic PMU attack classifier Demonstrated SIEM-based ADS and firewall
M5. Task 2.2 – Completion of Testbed-based evaluation of Attack Surface Analysis tool and algorithm prototypes	9/31/2018	AHA tool published (https://aha-project.github.io)
M6. Task 2.3 – Completion of Testbed-based Attack Surface Reduction tool and algorithm prototype	9/31/2018	Testbed deployment of SIEM-based ADS PMU Detection PNNL generated data sets
M7. Task 2.6 – Completion of Testbed-based system integration and evaluation	9/31/2018	AHA Outputs from assessments from 10+ EDS system on WSU/ISU/PNNL/CFU systems
M8. Task 3.2 – Completion of Tech transfer of prototypes to industry and utility partners	9/31/2018	Tool integrated into OSIsoft security evaluation processes
M9. Task 4.3 – Completion of Integrated system Demonstration with pilot deployments of developed tools and algorithm	9/31/2019	In progress. Field Testing started at Cedar Falls Utilities (AHA tool and SIEM-based ADS)

Attack Surface Analysis

Attack Surface Analysis - AHA Overview

- Analyze attack surface of critical ICS software platforms
- Provides graphical display of vulnerable processes and connections

Attack Surface Metrics

AHA Visualization

AND EMERGENCY RESPONSE

AHA Testbed Evaluation Results

Tool evaluated on 10+ different industry software platforms across multiple vendors

- Locations: WSU/PNNL/ISU/CFU/OSIsoft
- **Platforms**: EMS/DMS, FEPs, Historians, Substation Gateways,
- **Vendors**: GE, ABB, OSIsoft, Siemens

4: Historian Platform A

Historian Platform B

Control Center Platform A

Control Center Platform B

Control Center Platform C

Platform	# Processes	Harmonic M	Min R _{score}	Max R _{score}	
		Externally accessible	Internally accessible		
Control Center Platform A (Windows Server 2016)	12	38 53	74 78	0.068	1.859
Control Center Platform B (Windows server 2008R2)	43	9.53	8.22	0.177	6.690
Control Center Platform C(Windows Server 2016)	38	29.44	55.55	0.034	3.630
Historian Platform A	14	80	80	0.034	1.859
Historian Platform B	25	70.94	62.22	0.017	2.988

Attack Surface Reduction

SIEM-based ADS Design & Deployment

Synchrophasor Fault Replay Cyber-Attack **Detection Algorithm**

Attack Surface Reduction (MTD, ADS) – Real Case Studies

2015 Ukraine Power System Attack

1. Malware

injection

data

wiper

IEC104

launcher

backdoor

Crash override

(Industroyer)

Command & Control (C2)

Server

External Unknown Network

AND EMERGENCY RESPONSE

Ukraine Attacks Oriented Attack Surface Reduction

Events	Countermeasures	DoE CEDS Roadmap	NERC CIP			
2015 Ukraine attack	2-factor authentication	3: Protective Measures	CIP-005-5 R2.3: Multi- factor authentication			
	Egress/Ingress filtering	3: Protective Measures	CIP-005-5 R1.3: Access permissions			
	Intrusion/Anomaly Detection	2: Assess and Monitor Risk	CIP-005-5 R1.5: Malicious communication detection			
	Software Defined Network (SDN)+ Moving Target Defense (MTD)	3: Protective Measures	CIP-007-5 R3.1: To deter, detect, or prevent malicious code			
2016 Ukraine attack	Intrusion/Anomaly Detection	2: Assess and Monitor Risk	CIP-007-3a R4: To detect, prevent, deter, and mitigate malware			
	SDN + MTD	3: Protective Measures	CIP-007-5 R3.1			

Moving Target Defense (MTD)

2. Connection

via internal proxy to

SIEM-based ADS Design & Deployment

SGUIL-0.9.0 - Connecte 11 Apr, 04:32														
SGUIL-0.9.0 - Connected To localhost 🔶 🕈 🗕 🗗 🗙														
File Query Reports Sound: Off ServerName: localhost UserName: onion UserID: 2 2018-								18-04	04-11 04:33:18 GMT					
RealTime Events Escalated Events														
							10							174
ST	CNT	Sensor	Alert ID	Da	ate/Time	Src	IP	SPort	Dst IP			DPo	t Pr	
RT	512	onion-virt	1.49	2018-0	3-12 16:50:4	0.0	.0.0		0.0.0.0				0	
RT	1	onion-virt	3.27	2018-0	4-11 04:32:4	3 25.	25.25.27	45685	50.5.1.21	0		3306	6	
RT	1	onion-virt	3.28	2018-0	4-11 04:32:4	3 25.	25.25.27	45685	50.5.1.21	0		1521	6	
RT	1	onion-virt	3.29	2018-0	4-11 04:32:4	3 25.	25.25.27	45685	50.5.1.21	0		1433	6	
RT	1	onion-virt	3.30	2018-0	4-11 04:32:4	3 25.	25.25.27	45685	50.5.1.21	0		5432	. 6	
RT	1	onion-virt	3.31	2018-0	4-11 04:32:4	4 25.	25.25.27	45685	50.5.1.21	0		5902	6	
RT	1	onion-virt	3.32	2018-0	4-11 04:32:4	4 25.	25.25.27	45685	50.5.1.21	0		5801	6	
														-
10000		Y	Y		Show	Packet I	Data 🔽 Sl	how Rule						_
IP Resolution Agent Status Snort Statistics alert tcp \$EXTERNAL NET any -> \$HOME NET 5800:5820 (msg:"ET SCAN														
□ Reverse DNS							∇							
Src IP:						So	urce IP	Dest I	P Vei	r HL	TOS	len	ID	lag
Src Na	me:				112	25.25.2	25.27	50.5.1.210	4	5	0	44	40310	0
Dst IP:								UAPRS	F					
Dst Na	me:			_	TCP	Source	Dest R I	RRCSSY	I			2 100		
Whoir	Querre	G Nana C S		TCP-	Port	Port 1 (OGKHTN	N Seq #	¥	Ac	k#	Offset	Res	
whois	Query:	Wone S	DSICIP USI	EN	12010	45685	5801 .	X	. 3881194	1994	0		6	0
							4	Search Packe	t Pavload	0	Hex	· Te	xt No	Ca

Synchrophasor Fault Replay Cyber-Attack Detection Algorithm (GE GRC)

Performance of Fault Replay Cyber-Attack Detection Algorithm (GE GRC)

Validation using PNNL Testbed Data:

1 Event in Repository; 2/11 PMUs Compromised:

3 Events in Repository; **2/11** PMUs Compromised:

High true pos. rate, validated with help of PNNL; integration with GEGS EMS in Phase II

Collaboration/Technology Transfer

OSISoft

Internal: Integration with SDLC for Windows/Linux/Cloud environments

External: Recommended for OSI System Hardening

github.com/hpaul-osi/HardenedBaselines (Security Policy Configuration Tools)

Tech Transfer

https://aha-project.github.io/

Cedar Falls Utilities (Summer/Fall 2018)

SIEM-ADS: Prelim Deployment and Testing of ICS Anomaly-Detection System MTD: Feasibility evaluation for deployment (Layer 3 vs. Layer 2 solution)

Alliant Energy (Summer 2018)

SIEM-ADS: Training module on ICS/SCADA Anomaly-Detection System

Idaho Power (Summer 2018) SIEM-ADS: Training module on ICS/SCADA Anomaly Detection System

NERC GridSecCon (Fall 2018)

SIEM-ADS: Training module on ICS/SCADA Anomaly Detection System

IOWA State University – Graduate Research & Education SIEM-ADS: Deployment and Testing of ICS Anomaly-Detection System MTD: Testbed-based implementation, testing, and evaluation

Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user •Increase industry acceptance of AHA Tool among vendors and asset owners

- Presentations to more industry events
- Aggressively identify perspective vendor and asset owner users to evaluate AHA
- Explore Commercialization Opportunities for AHA tool

•Adoption of SIEM-based ADS into Utility SCADA Environment

• Cedar Falls Utilities, CornBelt Coop, MISO, MidAmerican, Alliant Energy

•Adoption of Layer 2 MTD in Utility SCADA Environment

Cedar Falls Utilities

•Hosting/Hosted Testbed-based training sessions

• Utilities within Iowa and beyond (Idaho Power, MISO), GridSecCon 2018 ...

•Adoption of Attack Surface Analysis and Reduction Techniques/Tools by EMS Vendors

• OSISoft (adopted AHA tool) and GE Grid Solutions (potentially)

Next Steps for this Project

Phase II: Field Deployment, Testing, Evaluation, Tech Transfer

Attack Surface Analysis Tool (WSU, GE-GR, PNNL)

- Incorporate system interconnections (e.g., network of systems into AHA)
- Incorporate system metrics into incorporate grid physical system metrics
- Evaluate AHA performance on additional EDS platforms

Attack Surface Reduction Tool (ISU, CFU, GE, ANL)

- SIEM-ADS Tool deployment, testing, and evaluation at Cedar Falls Utilities
- SIEM-ADS Tool via Training Session for MISO and CornBelt Power Coop
- Layer 2 Deployment, Testing and Evaluation at Cedar Falls Utilities
- PMU-based Anomaly Detection Algorithms & Integration into GE EMS Platform

