
Rita Foster, Jed Haile, Christian Hunt, and New Context 
Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018 

Firmware Indicator Translator (FIT)
Idaho National Laboratory (INL) 



86

Objective
• Enable firmware indicator and 

response capabilities via binary and 
translated code analysis methods to 
visualize layers of firmware code 
complexity behavior.

• Solving the adversaries are “racing to 
the bottom” – Spectre, Meltdown, 
Ryzenfall, Chimera, Trisis, Supply 
chain backdoors challenges

Schedule
• FY18: Concepts prototyped
• FY19: Refine, Best-Fit; Scale & Test 

Use Cases
• FY20: Demo & Open Source Tools

Summary: Firmware Indicator Translation

Total Value of Award: $ 2.3M

Funds Expended to Date: % 30%

Performer: Idaho National Laboratory

Partners: DTE; SCE; PG&E; Siemens; 
New Context



87

• SOA Gaps:
‐ Firmware analysis tools are limited and static
‐ Current Adversaries are focused on the sub components unseen, not 

monitored and undetected in firmware
‐ Many Ontologies exist for code and architecture but none describe firmware 

complexities 
• FIT is:

‐ Untangling complexities in firmware
‐ Agnostic to Vendor – Binary is Ground Truth
‐ Sheds light on previously hidden ‘features’ in firmware

• FIT end use will be broad:
‐ Visual representation of code behavior
‐ Predictive code behavior 
‐ Highlight differences for firmware update
‐ Enable the creation of indicators and remediation actions 
‐ Validate vendors and integrators products

Advancing the State of the Art (SOA)



88

Challenge 1 - Ontology
• Defined analysis ontology to identify components 

of firmware

Challenge 2 – Categories for Code
• Defined 17 feature matrix categories

Challenge 3 - Repeatability
‐ 4 distinct platforms ready for analysis

Challenge 4 – Heterogeneity
‐ Volume of firmware and platforms will increase 

likelihood of all layers analysis

Challenge 5 - Scalability
• Related internal research is working with high-

performance computing

Challenges to Success



89

Major Accomplishments
• Use of existing binary firmware analysis tools
• Creation of Firmware layers Ontology model
• Set up of 3 components/test environments provided 

by asset owners for analysis
• Indicator creation for Firmware Load/Extraction 

over a network & USB
• Demo proof of concept SIEM/STIX; 

Compromise vs Non
• Dis-assembled and translated sample libraries 

loaded into a graph database – many views of code 
• Creation of dis-assembled translated Firmware 

Analysis Tool framework
• Identification and refinement of feature matrix via 

machine learning
• Multiple machine learning techniques used on 

sample libraries to visualize code behavior

Progress to Date



90

Major Accomplishments 
‐ Binary Analysis

• Code Tools with Exploit
• Indicator of Firmware 

Egress
‐ Translation Proof

• SIEM/STIX
‐ Dis-assembled and 

Translated Code Behavior 
Analysis Tool Set

• Graph Database
• Hieratical View
• Machine Learning 

Techniques

Progress to Date



91

Graph Code Behavior



92

Larger Library



93

Stranded Code



94

Smaller Code



95

Plans to transfer technology – Open Source
Knowledge to end user via use cases

‐ Conferences and published articles on lessons learned from 
binary analysis (DHS ICS-CERT 2018); results of using 
machine learning on translated code; lessons learned: data 
analytics from multiple threat feeds

‐ Asset Owner Use: abandon technology; out of band analysis 
to known good; indicator and remediation creation to 
manage cyber threat to firmware on most critical embedded 
systems

‐ Vendor use for analysis of firmware code and interfaces
‐ Original equipment manufacturer use validation of code 

sources
‐ Government use potential for identifying unknown 

embedded code in supply chain; validating critical 
embedded systems; understanding malware code behavior

Collaboration/Technology Transfer



96

Approach for the next year
‐ Identify valuable tasks from binary analysis for potential 

use in translated code analysis
‐ Assess use of cyber injects/binary patch vs firmware 

versions
‐ Indicator analysis test set

• Data analytics for heterogeneous threat source
• Create indicators and remediation actions

‐ Scale up to one complete firmware base
• Highlight known version/binary patch differences
• Identify previously unknown and/or stranded 

Approach for the final year
‐ Scale up to multiple firmware bases
‐ Identify demonstration and test
‐ Host on open source repository

Next Steps for this Project



97

Graphical Code


