

OFFICE OF

ENERGY CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Cyber-Attack Detection and Accommodation for the Energy Delivery System

GE Global Research

Matthew Nielsen

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018

Summary: Cyber ADA for Energy Delivery System

SCR ammonia flow

Turbine exit temp & press

Objective

- Problem: cyber-attacker has made it past IT/OT security
- Proposed Technology:
 - Detect asset abnormal behavior
 - Locate attack focal points (nodes)
 - Forecast trending to abnormal behavior
 - Neutralize attacked nodes

Schedule

- Project dates: 10/1/16 9/30/19
- Key milestones & deliverables
 - Threats & Attack Simulations: 8/31/18
 - Feature Discovery: 5/16/18
 - ADA Algorithms: 8/31/18
 - Early Warning Algorithms: 8/31/18
 - Requirements & Concept Def: 12/30/18
- GE developing commercial plan & go to market strategy now.

Total Value of Award: \$4.1MM

Funds Expended to Date: 70%

Performer: GE Global Research

Partners: GE Power

Advancing the State of the Art (SOA)

- Today...
 - Many current commercial products focus on keeping out attacker.
 - Industry, R&D & commercial efforts underway looking at learning models to understand OT network behavior and finding anomalies.
- GE's ADA is a new layer of defense and uses the <u>physics</u> of the power generation asset for protection

- Feasibility demonstrated with plant/asset/grid dynamic simulations
- GE ADA should provide end users:
 - High detection accuracies and (better observability)
 - Low false positive rates (less alarm fatigue)

Challenges to Success

Challenge 1 – Focal Plant for Phase 2 Demonstration

- Strategically shifting to larger gas turbine fleet
- Connecting with GE O&M sites (GE run plants)
- Utilizing GE's extensive customer network
- Timeline: finalize by year end

Challenge 2 – Validating & Acceptance of Accommodation

- Accommodation will happen during asset operation
- Continue validation with high fidelity simulations
- Test at GE full speed, full load test stand
- Timeline: continue work in 2019+

Progress to Date: Gas Turbine Detection

1 Gas Turbine Produces Enough Power for ~250,000 Homes

Progress to Date: Field Test

Progress to Date: Power Gen Assets

DETECTION		PREDICTED	
		NORMAL	ATTACK
TRUE	NORMAL	99.87	0.13
	ATTACK	1.75	98.25

LOCALIZATION		PREDICTED	
		NORMAL	ATTACK
TRUE	NORMAL	99.98	0.012
	ATTACK	2.40	97.6

Normal Cases = 480; Attack Cases = 480; Nodes = 12 (for Localization)

DETECTION		PREDICTED	
		NORMAL	ATTACK
TRUE	NORMAL	99.00	1.00
	ATTACK	0.54	99.46

LOCALIZATION		PREDICTED	
		NORMAL	ATTACK
TRUE	NORMAL	100.00	0.00
	ATTACK	0.57	99.43

Normal Cases = 33; Attack Cases = 21; Nodes = 3 (for Localization)

DETECTION		PREDICTED	
		NORMAL	ATTACK
RUE	NORMAL	99.00	1.00
TR	ATTACK	0.34	99.66

LOCALIZATION		PREDICTED	
		NORMAL	ATTACK
TRUE	NORMAL	97.19	2.81
	ATTACK	0.00	100.00

Normal Cases = 49; Attack Cases = 7; Nodes = 7 (for Localization)

METHDOLOGY SCALES ACROSS MULTIPLE ASSETS

Progress to Date: GT Accommodation

7F Gas Turbine Simple Cycle Simulation 30MW to Baseload to 30MW

6 out of 15 nodes attacked

Collaboration/Technology Transfer

Technology Transfer

- End users: power plant operators and cyber security specialists
- Working with GE Power to define requirements for commercial product
- Future: run proof-of-concepts

Next Steps for this Project

Milestones for Phase 2

- 1) Commercial strategy & product requirements
- 2) GE test stand with 9HA.02 gas turbine full speed, full load
- 3) Power plant with 7FA.04 gas turbine

7FA.04 GE Gas Turbine (2)

^{(1) &}lt;a href="https://www.ge.com/reports/point-break-where-the-worlds-largest-gas-turbines-prove-their-mettle/">https://www.ge.com/reports/point-break-where-the-worlds-largest-gas-turbines-prove-their-mettle/

⁽²⁾ https://www.ge.com/power/gas/gas-turbines/7f-04