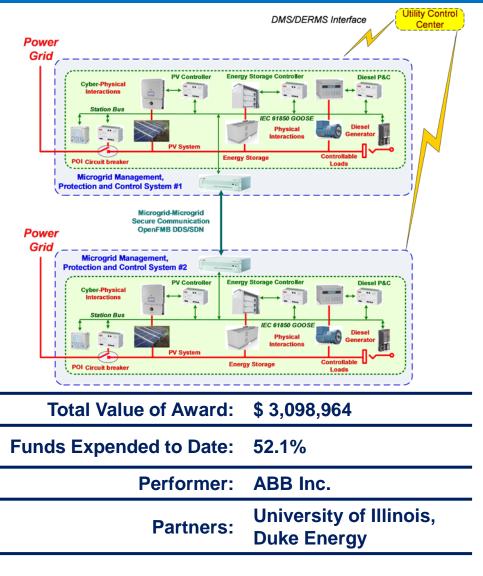
U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Multi-layered Resilient Microgrid Networks ABB Inc.

Dmitry Ishchenko

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018


Summary: Multi-layered Resilient Microgrid Networks

Objective

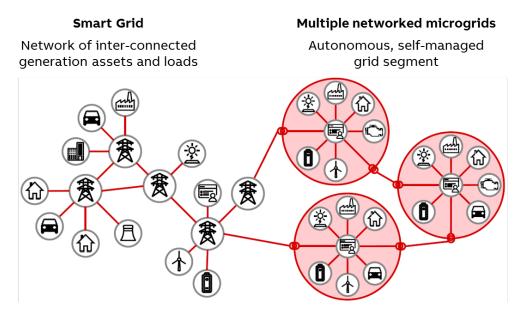
 Research, develop, and demonstrate cyber-physical resilient control and protection architecture for a multimicrogrid power system

Schedule

- 10/2016-10/2019
 - Threat analysis Done
 - Control and communication architectures design and lab-scale implementation - Done
- Capability: Cyber secure communication and control platform supporting a heterogeneous ecosystem of microgrids, with connections to both utility and peer microgrids

U.S. DEPARTMENT OF

Advancing the State of the Art (SOA)


- SOA solutions are mostly associated with addressing the operational and security challenges of a single microgrid
- Our approach extends microgrid P&C and communications to multi-microgrid networks to incorporate an added layer of intelligence at the grid edge
- Enable higher DER penetration levels and increased grid resiliency through improved DER asset utilization
- We are building on top of open standards (IEC 61850, CIM and OpenFMB) to ensure industry acceptance

Advancing the State of the Art (SOA)

- First principle based cyber threat detection and mitigation mechanisms
- Respect local microgrid information privacy to address varying microgrid ownership models
- Major project use cases and OpenFMB/GOOSE adapters contributed to the community
- Leveraging DER assets in multiple microgrids in a coordinated manner helps to increase power grid reliability, resiliency and power quality

From local benefit to grid support

Maintaining local microgrid privacy

 Only exchange state estimates with the neighbor microgrids as opposed to full network model/topology

Heterogeneous communication networks currently deployed

• Flattening communication profiles with OpenFMB/SDN extensions

Algorithm performance must be fast

 Leveraging peer-to-peer publisher subscriber model minimizing the overhead and implementing QoS for various performance classes

Progress to Date

Major Accomplishments

- Derived control and communications architecture based on open industry standards (IEC 61850/CIM/OpenFMB)
- Implemented lab-scale proof of concept prototype for major project use cases
- Control and power real-time hardware in the loop implementation
- Federated real-time co-simulation testbed to support multimicrogrid use cases

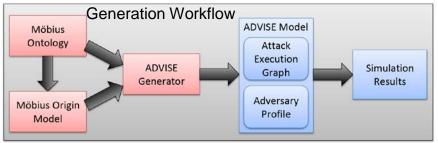
Collaboration/Technology Transfer

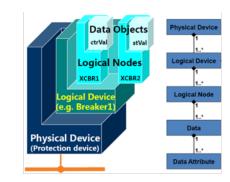
Plans to transfer technology/knowledge to end user

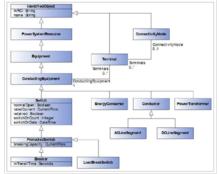
- What category is the targeted end user for the technology or knowledge?
 - Asset owners
 - Utilities
 - Vendors
- What are your plans to gain industry acceptance?
 - Field demonstration with Duke Energy support
 - Providing inputs to IEC/IEEE/OpenFMB Users Groups
 - Information models supporting project use cases released to the community

Next Steps for this Project

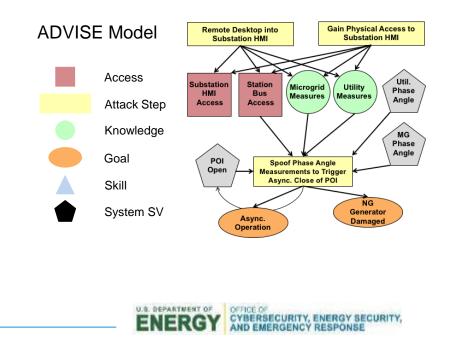
Approach for the next year or to the end of project

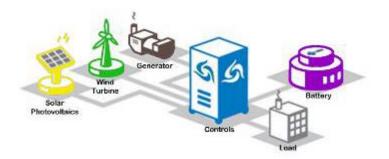

- Field demonstration with algorithm tuning as needed in the second quarter of 2019

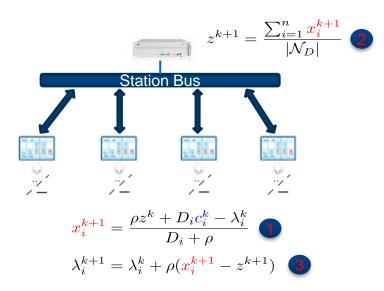

- Dissemination of results through IEEE/IEC/UCAIuG


Ontology Based Threat Modeling

- Ontology defined based on the IEC 61850/CIM/OpenFMB Model
- Extend adversary modeling framework ADVISE to comprehend cyber-physical aspects
- Automatic generation of attack execution graphs from block diagram system definition (Mobius Origin Model)
- Identify critical components (those on multiple critical attack paths)
- Can be a basis for mitigation strategy

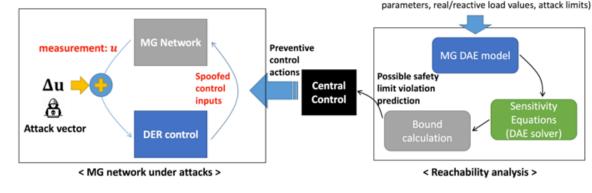





Common Information Model Primer, EPRI 2015 Technical Report

Frequency Control and Reachability Analysis

- Challenges in maintaining microgrid frequency stability
 - Scarce generation resources
 - Varying renewable energy generation
 - Low physical inertia for frequency damping
 - Solution: distributed secondary frequency control based on local measurements, robust against link failure and attack

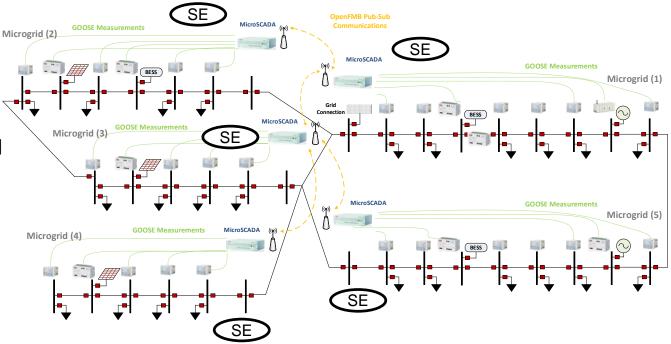

Inputs/parameters (voltage measure, network/DER

YBERSECURITY, ENERGY SECURITY,

AND EMERGENCY RESPONSE

Reachability Analysis

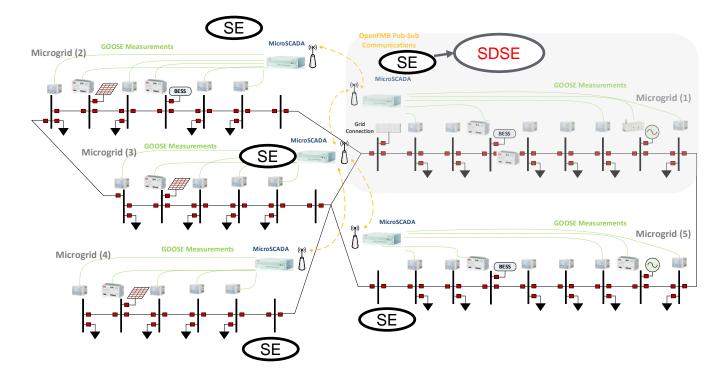
 Find envelope on the solution trajectories for all possible parameter/input variations due to spoofed measurement/control



U.S. DEPARTMENT OF

OFFICE OF

Secure Distributed State Estimation


- Communications within microgrid: IEC 61850 GOOSE
- Microgrid-to-microgrid communication with OpenFMB/DDS with SDN extension
- Supervisory microgrid controller (MicroSCADA/COM600) implements
 - Secure Distributed SE
- State estimation as input into Microgrid EMS and other functions

Secure Distributed State Estimation

- Secure DSE detects cyber issue in Microgrid 1
- Isolate Microgrid 1 from the rest of the system with SDN and (optionally) physically disconnect

U.S. DEPARTMENT OF OFFICE OF CYBERSECURITY, ENERGY SECURITY, AND EMERGENCY RESPONSE

Thank You! Questions?