

Thermoelectric Clothes Dryer

Oak Ridge National Laboratory/Samsung Electronics America, Inc. Kyle Gluesenkamp, PhD gluesenkampk@ornl.gov

Project Summary

Timeline:

Start date: 10/1/2016

Planned end date: 09/30/2019

Key Milestones

- Go/No-Go Milestone: Demonstrate at least 75% of the EF target and not more than 150% the dry time defined in product criteria. Met 09/30/2017
- Go/No-Go Milestone 1; Projected retail premium <\$565 at scale. **Met** 12/31/2017
- Milestone; Establish power supply quality requirements to maintain TE performance. Met 03/31/18

Key Partners:

Samsung Electronics America, Inc.

CRADA Partner

Budget:

Total Project \$ to Date:

DOE: \$800k

Total Project \$:

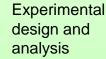
DOE: \$1050k

Project Outcome:

The technical and commercial viability of solid state thermoelectric heat pump clothes dryer technology is evaluated to meet the MYPP goals of reducing conventional dryer energy consumption by 50% and having installed cost premium <\$565. The project also addresses the BTO goal to develop advanced non-vapor compression heat pump solutions to facilitate phase-out of today's widespread refrigerants.

Team

ORNL



Kyle Gluesenkamp R&D Staff, Project PI

- Project management
- · System modeling and design
- Research plan development

Anthony Gehl R&D Staff

- Prototype fabrication and assembly
- Data acquisition and sensing
- Evaluation

Viral
Patel
R&D Staff

Ahmad Abu-Heiba R&D Staff

- Costing
- Data analysis

Samsung Electronics America

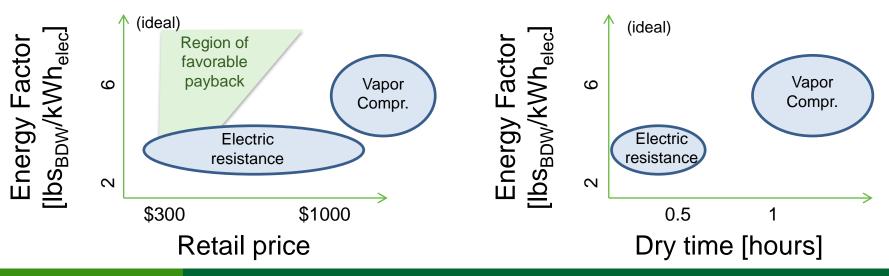
A leading supplier of residential appliances in the US market

Guolian Wu Senior Engineering Manager

Ravee Vaidhyanathan Engineering Director

- Revision of product criteria and project goals based on consumer expectations
- Reporting of project progress to SEA management
- Biweekly review meetings

Philip Boudreaux R&D Staff

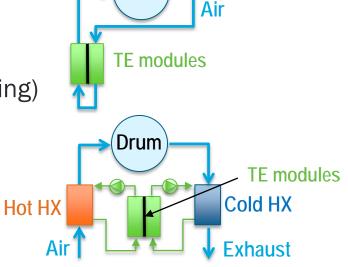

Challenge/Problem definition

The US clothes dryer market is huge in terms of energy consumption and cost of energy:

- 638 TBtu/yr: residential electric clothes dryers (primary energy market size, 2020)
- 5.6 million annual unit shipments (2008)
- 80% of US households have one

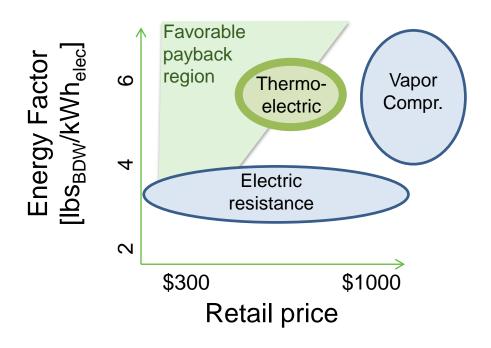

Vapor compression (VC) heat pump dryers can have up to 50% energy savings compared to base efficiency dryers. They recently entered the US retail market but have:

- Retail price premium of over \$1100 compared with base models
- Long dry times
- Available options utilize refrigerants that may face regulatory restrictions

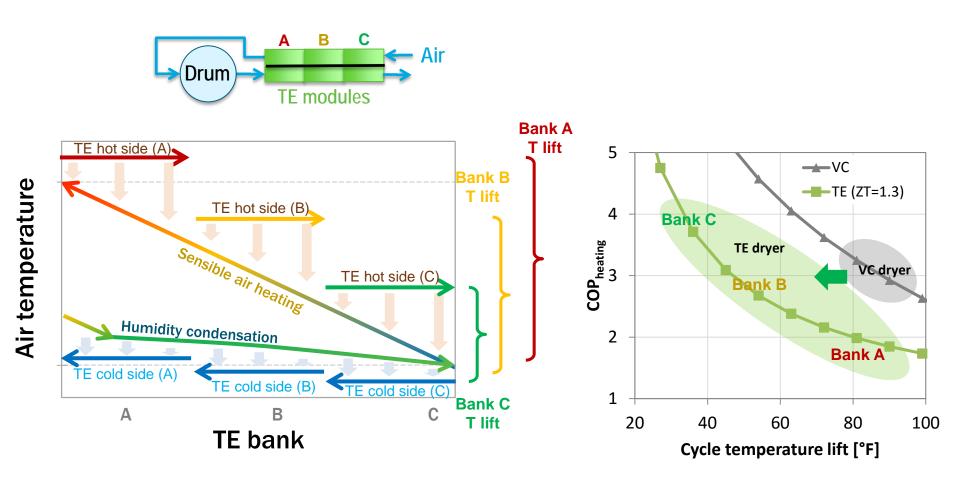


Approach – Background

- State of the art: Conventional dryers
 - EF/Dry time: 3.73, 15-30 minutes
 - Retail: ~\$350 \$1,100
- State of the art: Vapor compression dryers
 - EF/dry time*: 4.3 6.4; 57 75 minutes
 - Products introduced to US market 2015
 - Retail: ~\$1,600
- This project, FY17: Air-based thermoelectric (TE)
 - EF 6.03 obtained
 - Dry time longer than vapor compression
- This project, FY18: Pumped-loop (patent pending)
 - Target EF/dry time:
 - 6.1, 90 minutes (Eco mode)
 - 5.0, 70 minutes (Normal mode)
 - Achieved so far in FY18: 5.4, 80 minutes



Drum


Approach

- Thermoelectric-based approach projected to have lower first cost than VC dryers by:
 - Replacing refrigerant lines, compressor and expansion device with low-cost TE modules, water-pumped loop and low-cost power supplies
- 40% energy savings compared to base efficiency dryers
- Faster dry times are possible (compared with VC dryers)
- Solid-state TE heat pump technology does not use any refrigerants

Approach

The traditionally inferior efficiency of thermoelectric heat pumps is overcome by taking advantage of inherent scalability/modularity of TEs

Approach

Approach:

- Thermodynamic system modeling
- Fabrication of TE dryer prototype with liquid-pumped-loop thermoelectric heat pump
- Accelerated experimental study of long-term effects of power quality and power cycling on thermoelectric module performance
 - Down-selection of low-cost power supply
- Prototype development, evaluation and comparison to baseline VC HPCD

Key Issues:

Auxiliary power consumption

Distinctive Characteristics: High-performance design is achieved at low cost through unique utilization of:

- Commercially-available, high-volume production TE modules
- Low-cost power supplies for TE modules
- Compact hydronic mini-channel heat exchangers for liquid-pumped-loop
- Conventional fin-and-tube heat exchangers

Impact

- During project: Laboratory prototype will prove performance (EF and dry time), to save 40% primary energy (254 TBtu/yr) in electric clothes drying
- Intermediate term: Demonstrate a path to a low-cost approach, so that appliance
 OEM can initiate product commercialization.
- Long term: Position the US as leader in dryer industry, creating jobs and spurring further innovation, and saving 254 TBtu/yr.

BTO 2016-2020 Multi-year Program Plan Goal	Project Goal	Project Status
Increase electric dryer Energy Factor from 3.9 (2010 ENERGY STAR) to 6.1 lb/kWh	CEF = 6.1, 90 minute dry time (Eco mode) CEF = 5.0, 70 minute dry time (Normal mode)	CEF = 5.4 80 minutes
Available for retail price premium of less than \$565	Projected <\$565 retail price premium at scale	Met (FY18 Q1 Go/No- Go milestone)

Progress and Accomplishments

Accomplishments:

In Year 1:

- Defined product criteria based on previous results and knowledge of consumer expectations and product insight from SEA
- Completed first prototype and achieved ≥75% target EF and ≤ 150% target dry time
 In Year 2, Q1 and Q2:
- Completed cost projection: retail premium projected to be <\$565
- Established power supply requirements based on unique long-term power cycling experimental data

Market Impact: Samsung Electronics America evaluating commercialization potential. If successful, market entry will give consumers reasonably-priced, energy-efficient alternative

Awards/Recognition: None yet

Lessons Learned:

- Hydronic system design requires innovative engineering approach
- Cost of TE modules and power supplies are highest in incremental bill of materials relative to standard ER dryer
- Blower and drum motor power significant source of energy consumption
- Air leakage management is important for system performance

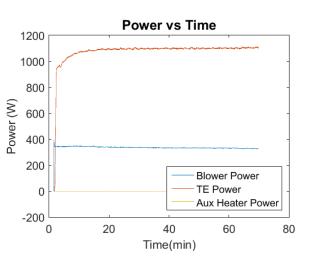
Progress and Accomplishments – Design

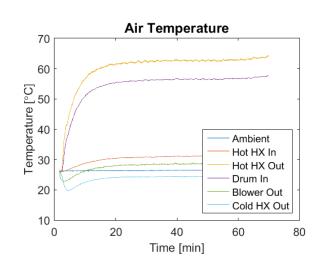
TE heat pump assembly consists of individual sub-assemblies Early dryer prototype design

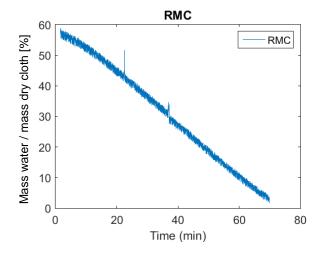
Completed prototype

Patent pending

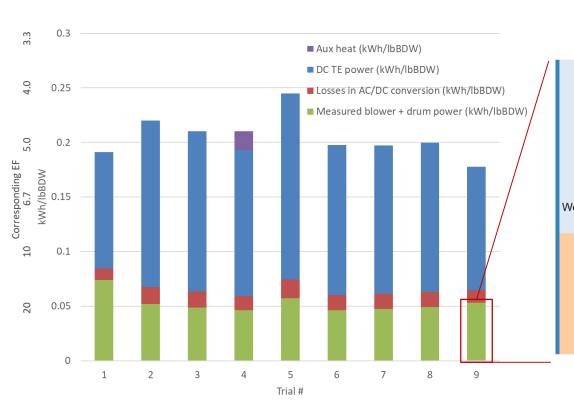
Progress and Accomplishments – Fabrication

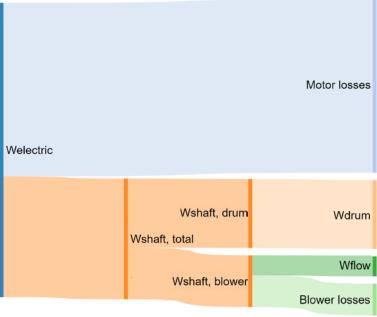





Patent pending

Progress and Accomplishments – Evaluation


- Drum inlet temperature achieved (~50-60°C) comparable to VC HPCD but lower than electric resistance dryer
- Blower/drum motor power is approximately 35% of TE power
- Real-time remaining moisture content (RMC) of clothes load is measured by a high-accuracy whole-dryer scale



Progress and Accomplishments – Results

Auxiliary power consumption

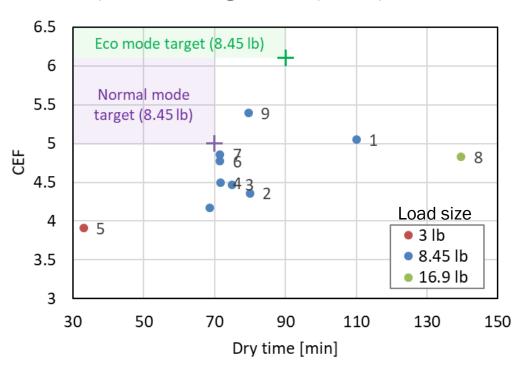
Stakeholder Engagement

Partners, Subcontractors, and Collaborators: Industry partner, Samsung Electronics America

- Biweekly status meetings
- SEA fully engaged in engineering and technical discussions

Communications:

- Abstract accepted at 17th International Refrigeration and Air Conditioning Conference at Purdue University, July 2018: "Thermoelectric Heat Pump Clothes Dryer using Secondary Loop Heat Exchangers: Experimental Evaluation and System Modeling"
- Guolian Wu, Kyle Gluesenkamp, Viral Patel, Ravee Vaidhyanathan. Patent application 62/654,239, filed April 6, 2018 "Apparatus and Method for a Thermoelectric Heat Pump Appliance with Secondary Fluid Loops".
- Patel, V. K., Wang, H., Gluesenkamp, K. R., Gehl, A., Ormston, G., Kirkman, E., "Long-term effects of power quality and power cycling on thermoelectric module performance," *ASME InterPACK*, San Francisco, CA, August 2018.
- Patel, V. K., Gluesenkamp, K. R., Goodman, D., Gehl, A., "Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer," *Applied Energy*, Volume 217, 1 May 2018, Pages 221–232.
 - DOI: 10.1016/j.apenergy.2018.02.055


Remaining Project Work

Nearing project targets

- CEF = 6.1, 90 minute dry time (Eco mode)
- CEF = 5.0, 70 minute dry time (Normal mode)

To meet project targets, next steps are:

- Continue testing with variation in control strategy, air flow rate
- Identify design and component changes to improve performance

Thank You

Oak Ridge National Laboratory/Samsung Electronics America, Inc.

Kyle Gluesenkamp, R&D Staff Member, Building Equipment Research Group

gluesenkampk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$1050k

Variances: None

Cost to Date: \$497k

Additional Funding: Cost share from CRADA partner

Budget History							
	2017 ast)	FY 2018 (current)			2019 nned)		
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
350k	*	450k	*	250	*		

^{*} In-kind contribution from CRADA partner – exact total is confidential information

Project Plan and Schedule

- October 1, 2016 September 30, 2019
- Go/No-Go met: December 31, 2017: Projected retail premium <\$565 at scale

Project Schedule												
Project Start: Oct 1, 2016		Completed Work										
Projected End: Sep 30, 2019		Active Task (in progress work)										
	Milestone/Deliverable (Originally Planned)											
	Milestone/Deliverable (Actual)											
		FY	2017			FY	2018			FY2	Y2019	
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q2: Product criteria defined												
Q4: First prototype fabricated				•								
Q4: ≥75% target EF and ≤150% target dry time												
Q1 Go/No-Go: Projected retail premium <\$565												
Q2: Establish power supply requirements												
Current/Future Work												
Q3: Fabricate heat sinks <0.4 inWC, <5 K AT												
Q4: Prototype evaluation EF>6 in <70 min												