

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Home Battery System

National Renewable Energy Laboratory Dane Christensen, Senior Engineer <u>dane.christensen@nrel.gov</u> 303-384-7437

Project Summary

<u>Timeline</u>

Start date: May, 2016 Planned end date: Sept, 2018

Key Milestones

- 1. Demonstrated automated, self-learned control of simulated loads. 9/20/2016
- 2. Demonstrated improved efficiency, resource predictions, and laboratory readiness for scenario experiments. **7/20/2017**
- 3. Document laboratory findings. Release open source software modules to enable industry adoption. 9/30/2018

<u>Budget</u>

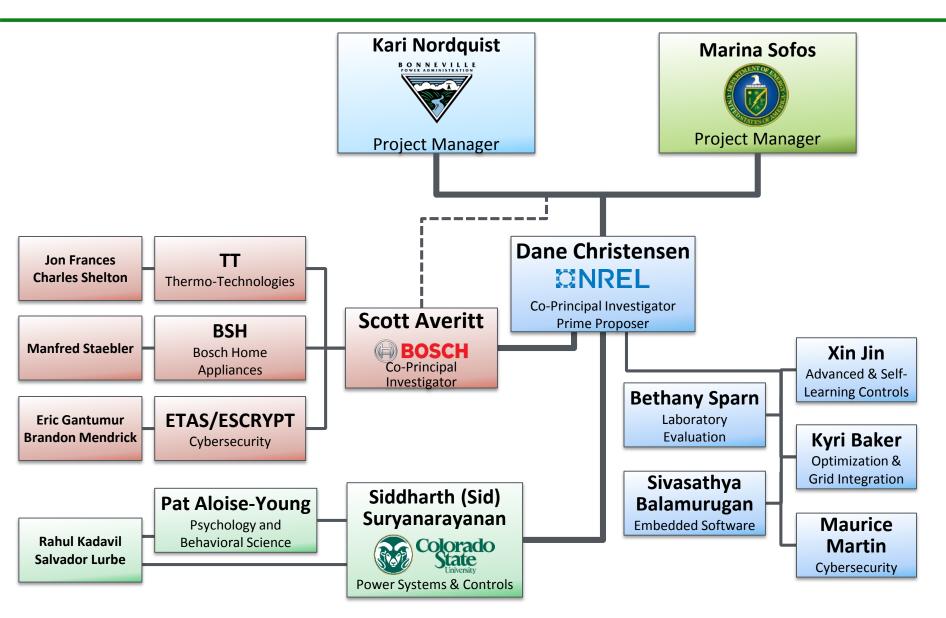
Total project, to date: \$2.64M

- DOE: \$684k
- Cost Share: \$1.96M (\$1.20M BPA, \$760k Bosch)

Total project: \$2.83M

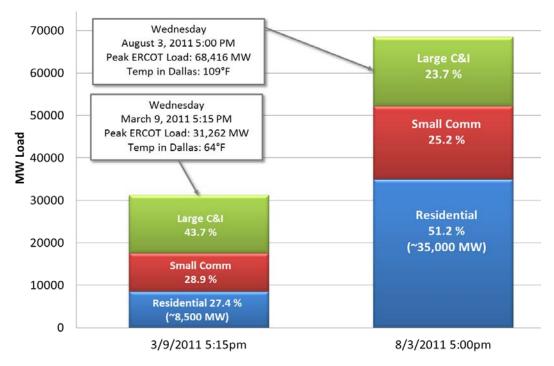
- DOE: \$750k
- Cost Share: \$2.08M (\$1.25M BPA, \$830k Bosch)

Key Partners:



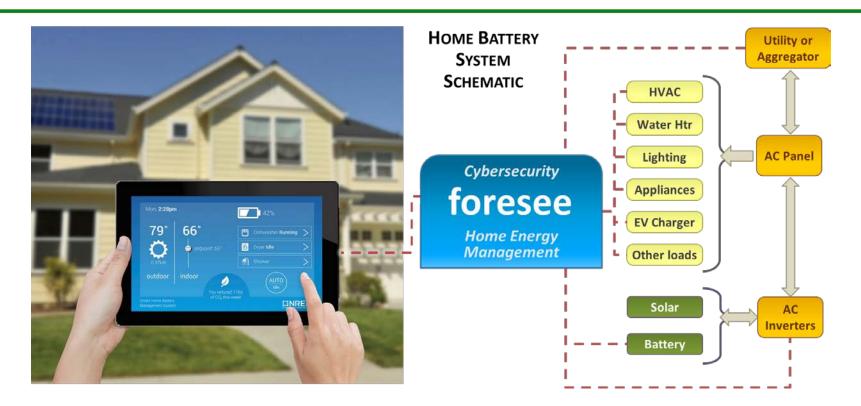
Project Outcomes

Foundational automation strategies enable future product solutions to deliver win-win gridinteractive efficiency for homeowners, utilities, and energy service aggregators.


Increase residential sector energy efficiency (goal: 5% savings per home, or ~1 Quad potential) and demand response participation (goal: >2 kW firm resource per home), by easing consumer adoption of integrated solutions, towards enabling >10% active devices to provide flexibility by 2035.

Team

Challenge


- Residential electricity consumption is larger than any other sector, and dominates utility peak load
- But...
 - Residential buildings are
 96% of utility customers
 - There is high occupant and building diversity
 - Decisions are less financiallymotivated
 - Awareness of grid issues is lacking
 - Internet of Things creates dozens of new cybersecurity risks per home
 - Rapid growth in rooftop PV challenges existing grid control and business models

How can we leverage connected residential products to generate more EE and DR, while avoiding occupant intervention & discomfort? Are there Win-Win solutions?

ERCOT Peak Loads

Approach

The Home Battery System project expects to achieve the following technical objectives:

- 1. Guaranteed comfort and improved energy savings for homeowners
- **2.** Optimal operation of home based on user preferences and grid signals
- 3. Cybersecure demand response (DR) compliant with critical infrastructure protection (CIP)
- 4. Delivery of highly-available (more than 90%) DR capacity, >2 kW/home, from individual homes
- 5. Reliable DR capacity prediction from individual homes across multiple look-ahead time frames

Approach

Interface for homeowner engagement, preferences Multi-criterion decision making control algorithms Cybersecurity layer for privacy, grid security

Develop & install hardware

Validate under realistic lab use cases

Year 1

Develop fundamental methods and architecture

Year 2

Integrate software to improve control and reduce uncertainty.

Prepare laboratory

Year 3

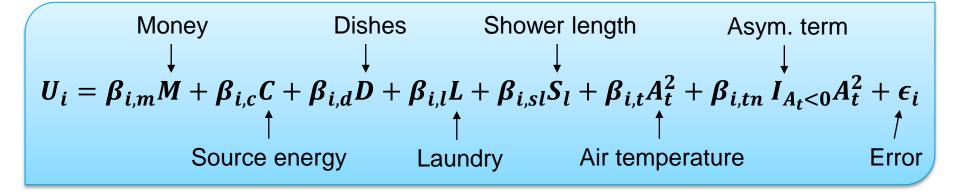
Conduct laboratory experiments to study dynamic operation and validate outcomes from simulation.

Impact

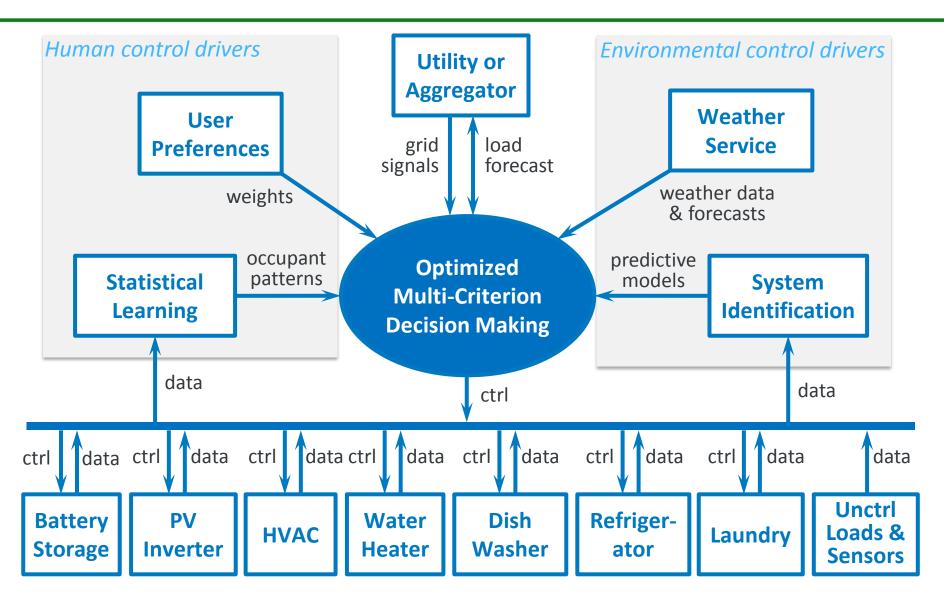
- Demonstrates feasibility of fundamental methods and algorithms for a residential automation serving homeowners, utilities, and energy service aggregators.
- Demonstrates 5% annual energy savings and >2 kW firm resource per home from demand response participation without sacrificing occupant comfort or requiring user intervention.
- Laboratory experiment results will establish technical feasibility, leading to:
 - Market-driven solutions contributing to >10% of active devices providing grid flexibility by 2035, and
 - Informed field experiments in the future.

Progress: User Preference Elicitation

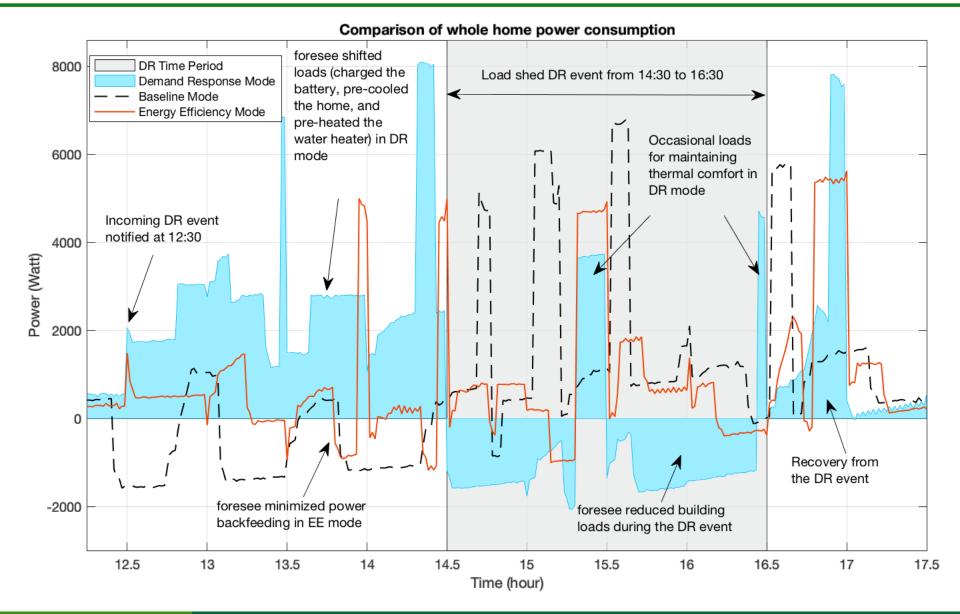
- Three method evaluated; 1,000 respondents each
- Follow-up survey,
 250 each, to assess
 predictiveness

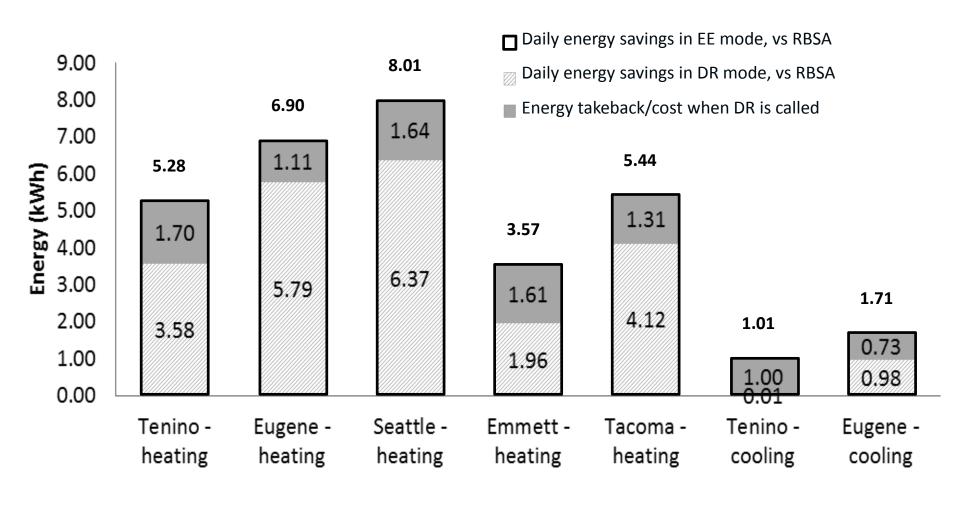


Method	Correct Predictions
AHP	49.0%
DCM	68.0%
SMARTER	72.2%

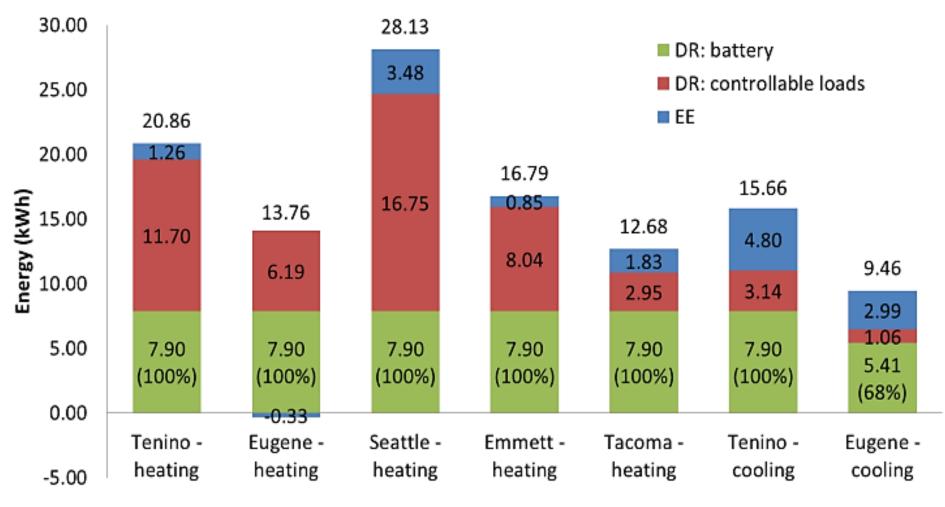


SMARTER selected as the initialization method for **foresee**

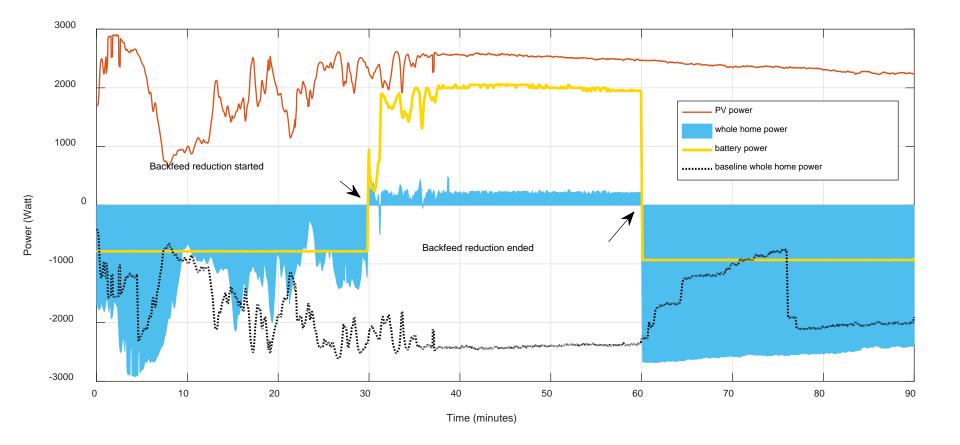

Progress: Control Architecture


Progress: ESIF Experimental Testbed

Progress: Demand Response Use Case



Progress: Daily Energy Savings Breakdown


(4-hour loadshed event)

Progress: DR Demand Reduction Breakdown

(4-hour loadshed event)

Progress: Solar Firming Use Case

Progress: Cybersecurity Layer

- ✓ Documented rigorous risk assessment
- Created an implementation plan to address risks in software, hardware
- ✓ Developed the cybersecurity layer based on the implementation plan
- Developed a security test plan and CIP compliance document
- Assessed platform hardening and documented best practices
- Penetration testing underway

Stakeholder Engagement: Advisory & Outreach

 Industry advisory board on sizing batteries for a smart home, using multi-criterion model predictive control

- Laboratory demonstrations for eight major utilities and industry stakeholders.
- Active industry discussions to resolve real-world issues via field experiments/ pilots.

2 Journal papers, 3 in development
5 Conference papers, 5 in dev.
9 Conference presentations, to date
2 Published presentations/webinars
1 Copyrighted open-source software

Remaining Project Work

- 1. Perform laboratory experiments to evaluate Technical Objectives per approved Scenario Test Plan
 - Automated satisfaction of three different archetype homeowners' preferences
 - "Business as usual" baseline in three climates
 - EE operation under TOU rates in three climates
 - Locationally-relevant DR in three climates
 - 24 physical performance scenarios
 - 11 different cybersecurity scenarios
- 2. Perform simulations to evaluate aggregated impacts
- 3. Document and close out project end of FY 2018
- 4. Complete in-process publications, including:
 - Application of NERC CIP Standard requirements to aggregated end-use loads & building energy management systems
 - Preference elicitation methodology comparison for multicriterion control of residential equipment

Thank You!

The Home Battery System Team National Renewable Energy Laboratory Dane Christensen, Senior Engineer <u>dane.christensen@nrel.gov</u> 303-384-7437

REFERENCE SLIDES

Stakeholder Engagement: Publications

- X. Jin, K. Baker, S. Isley, and D. Christensen. "User-Preference-Driven Multi-Objective Model Predictive Control of Residential Building Loads and Battery Storage for Demand Response." Proceedings of the 2017 American Control Conference. https://www.nrel.gov/docs/fy17osti/67809.pdf
- E. Raszmann, K. Baker, D. Christensen and Y. Shi, "Modeling Stationary Lithium-ion Batteries for Optimization and Predictive Control." IEEE Power and Energy Conference at Illinois (PECI) 2017. (Best Paper Award) <u>https://www.nrel.gov/docs/fy17osti/67809.pdf</u>
- D. Christensen, S. Isley, K. Baker, X. Jin, P. Aloise-Young, R. Kadavil and S. Suryanarayanan, "Homeowner Preference Elicitation: A Multi-Method Comparison," ACM BuildSys '16, Stanford, CA, Nov. 2016.
- R. Langner and D. Christensen, "Navigating Cybersecurity Implications of Smart Outlets." *Accepted*, ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 12-17, 2018.
- P. Aloise-Young, S. Isley, R. Kadavil, S. Suryanarayanan and D. Christensen, "Preferences for Demand Response Behavioral Sacrifices." ACEEE Behavior Energy & Climate Change conference, Sacramento, CA, Oct. 15-18, 2017.
- Webinar on Battery Sizing for the Smart Home, driven by foresee, was delivered. (paper in development) Slides: <u>https://www.nrel.gov/docs/fy18osti/70684.pdf</u> & recording: <u>https://attendee.gotowebinar.com/register/71592</u> 43851961563905

Most Impactful Publications:

X. Jin, K. Baker, D. Christensen, and S. Isley, "foresee: A usercentric home energy management system for energy efficiency and demand response." Applied Energy, 205,1 November 2017, pp. 1583-1595. https://doi.org/10.1016/j.apenergy. 2017.08.166

K. Garifi, K. Baker, B. Touri, and D. Christensen, "Stochastic Model Predictive Control for Demand Response in a Home Energy Management System." Accepted, IEEE Power & Energy Society General Meeting, August 5-9, 2018.

R. Kadavil, S. Lurbe, S. Suryanarayanan, P. Aloise-Young, Steven Isley, and D. Christensen, "An Application of the Analytic Hierarchy Process for Prioritizing User Preferences in the Design of a Home Energy Management System." Accepted, Sustainable Energy, Grids and Networks.

Project Budget

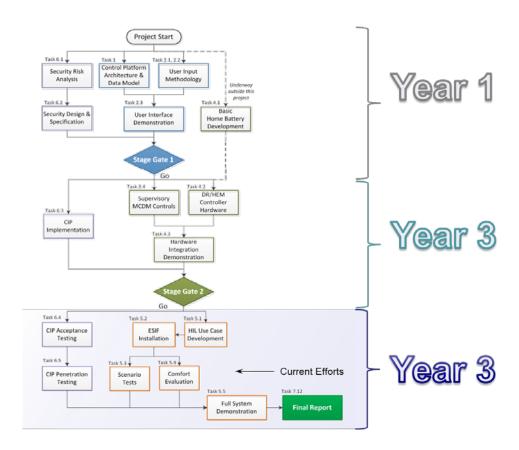
Project Budget:	(\$k)	DOE	BPA	Bosch	Total
	FY16	250	500	312	1,062
	FY17	250	500	435	1,185
	FY18, to date	186	200	13	399
	FY18, remaining	64	50	70	184
	Total	750	1,250	830	2,830

 Variances: No significant variances. Bosch delivered all expected effort at slightly lower accrued cost share than initially expected.
 Cost to date: \$2,640k
 Additional funding: non-BTO DOE Extension to enhance project impact, \$250k

Budget History								
FY 2016 – FY 2017 (past)			2018 rent)	FY 2019 Project Concluded				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$ 500k	\$ 1,760k	\$ 250k	\$ 320k	N/A	N/A			

Project Plan and Schedule

Planned start date: 10/1/2015 Actual start date: 5/1/2016


- Delayed start due to contracting
- Increased effort/spending & met Year 1 Go/No Go Milestone on time
- Met Year 2 Go/No Go Milestone on time **Project end date:** 9/31/2018

1.1 (1.2 (1.3 (2 (Task Name Control Platform Control Architecture Data Model Equipment Drivers	1	2	3	4	1	2	3	4	1	2	3	4
1.1 (1.2 (1.3 (2 (Control Architecture Data Model												
1.2 [1.3 E 2	Data Model										_		
1.3 E													<u> </u>
2 L	Equipment Drivers	_											
21	User Preference												
	Input Methodology												
2.2 F	Preferences to Control Inputs												
2.3	Demo User Interface												
3 4	Advanced Controls												
	Reduced-Order Equipment Models												
3.2 N	MPC for each equipment model												
3.3 5	Self-learning algorithms												
3.4 5	Supervisory MCDM												
4 H	Hardware Development												
4.1 E	Battery Selection & Integration												
4.2 E	Bosch Connected Appliances										-		
4.3 C	Demonstrate Integration in ESIF												
5 F	Performance Test & Validation												
5.1 C	Develop test use cases												
5.2 I	Install equipment in ESIF												
5.3 S	Scenario Experiments												
5.4 0	Comfort Evaluation												
5.5 F	Final Demonstration												
6 0	Cybersecurity (CIP)												
6.1 5	Security Risk Analysis												
	Security design and Specification												
	Implement & deploy demo CIP												
	Acceptance testing												
	Penetration testing												

Current work

- Laboratory scenario experiments underway
- Cyber penetration testing is underway

Next major milestone: Project completion

