

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

PARC (A Xerox Company) & Energy ETC, Inc.

Dr. Clinton J. Smith, Member of the Research Staff

clinton.smith@parc.com

Project Summary

Timeline:

Start date: 1/1/18

Planned end date: 6/30/19

Key Milestones:

- 1. CO₂ sensitivity <100 ppm; range of 100-2000 ppm demonstrated under expected operating conditions. (Month 13)
- 2. CO₂ measurement precision <50 ppm and drift <50 ppm/year (Month 18)

Budget:

Total Project \$ to Date:

• DOE: \$56,074

Cost Share: \$14,018

Total Project \$:

• DOE: \$500,893

Cost Share: \$125,223

Key Partners:

Project Outcome:

- Ultra-low cost, size, weight, and power (SWaP) printed CO₂ sensor system
 - Occupancy detection
 - Enable DCV on a per-room basis
- Improve energy efficiency and facilitate healthy indoor air quality (IAQ)
- Effective DCV can lead to a nationwide savings estimate of ~0.38 Quad.

(https://www.eia.gov/consumption/commercial/reports/2012/buildstock/)

Team

open innovation, printed & flexible electronics, ML, sensor systems, RF

Clinton Smith, Ph.D. (PI)

Elif Karatay, Ph.D. (thermal modeling,

design)

Austin Wei, Ph.D. (materials)

Eric Cocker, Ph.D. (data analytics, DoE)

Mahati Chintapalli, Ph.D.

Victor Nguyen (embedded software

(materials/characterization)

development)

Joseph Lee (circuit design &

layout)

Frances Yan (Industrial Design)

Supplier-agnostic BMS integration leader

Rick Costanza (Co-owner, VP Operations)

Brian Schroeder (Director of Engineering)

Challenge

To ensure healthy air quality, buildings are over-ventilated by 6 × required rates*

Up to 18% energy savings are available through greater DCV adoption: up to 0.4 Quad/yr**

BUT

Gas (CO₂) sensors are expensive, inaccurate; occupancy sensors are unreliable or violate privacy

AND

Existing platforms that can measure IAQ *en* suite for indoor comfort are cost prohibitive

Solution: Printed low-cost, sensitive, accurate, CO₂ sensor to enable per-room feedback for DCV

^{*}Persily, A. et al. Analysis of Ventilation Data from the U.S. Environmental Protection Agency Building Assessment Survey and Evaluation (BASE) Study (2004).

^{**}Zhang, J. et al. Pnnl-22072 1-79 (2013).

Approach

- Printed sorbent detects ppm-level CO₂
 - Costs pennies → \$15 installed cost
 - Flexible form factor
 - Commercial optical devices cost ~\$100
- Utilize heat of adsorption for self-calibration
- Designed to be plug-and-play for integration with existing BMS
- Integrate into PARC's growing gas sensing IoT technology platform
- Integration into the BMS at PARC's facility for prototype validation

Impact

- Expected 1.2 year payback based on energy cost savings
- Have observed commercial sensors to drift by ±200 ppm
 - BMS CO₂ threshold settings vary from 600 800 ppm
 - Not actively utilized due to over ventilation
- Accurate CO₂ sensor will enable less ventilation without exceeding ppm limit
- Platform extensible to overall indoor air quality monitoring without added cost
 - Healthier environment, increased comfort

Commercial	
	HVAC
Cost/sensor tag (\$)	\$15.00
Area covered by base station (sq. ft.)	2000
Sensors/base station	20
RF hub installed cost (\$)	\$80.00
System installed cost (\$/sq. ft.)	\$0.19
Baseline energy use (kWh/sq. ft./y)	8.0
Energy cost (\$/kWh)	\$0.11
Projected energy savings (%)	17.8%
Energy cost savings (\$/sq. ft./y)	\$0.25
Simple payback (y)	1.2

Overall Project Plan

- Project Goals
 - Precision <50 ppm CO₂
 - Drift <50 ppm CO₂/year
 - 50-2000 ppm CO₂ dynamic range
 - <1 minute response time</p>
 - Deployment to office scenario on FHE compatible substrate/system

- BP1 Goals
 - Precision <100 ppm CO₂
 - <1 minute response time</p>
 - Preliminary estimate of 1.2 year payback
 - Electronics platform capable of measurement requirements

Progress

- Currently in Q2
- Accomplished all Q1 milestones
 - Thermistor performance, thermal model developed
- Characterizing sorbent & binder mixtures to enable effective printing and thermal coupling to thermistors
 - On track to meet milestones (50% efficiency in M7)
- Validating thermal model experimentally

	100 % N ₂ →	100 % CO ₂	100 % CO ₂ → 100 % N ₂						
Polymer Type	Peak Area	Efficiency	Peak area	Efficiency %					
	J/g	%	(J/g)						
Type 1	32.9	42	37.6	42					
Type 1	35.4	46	38.2	43					

Stakeholder Engagement

- Actively engaging with Xerox (parent company) along with other companies in the HVAC and BMS space.
- Conversations with companies in HVAC and BMS space (including Energy ETC, our team-member) are enabling us to understand the market state-of-the art along with target price points.

Remaining Project Work

Primary Goal: Effectively measured heat produced in sorbent by CO₂ adsorption*

Current Efforts:

- Optimizing printed mixtures to maximize heat conduction to thermistors.
 - Sorbent adsorption efficiency goal of 50% in M7, 75% in M10
 - Heat transfer efficiency goal of 50% in M7, 70% in M10

Future Efforts:

- Quantify sensor precision and accuracy
 - BP goal of 100 ppm precision; Project goal of 50 ppm precision and 50 ppm/year accuracy
- Develop algorithms and custom electronics to deploy the printed sorbent in longterm office tests.
 - Low-noise, low-power circuits for thermistor measurement
 - Device layout to minimize drift
 - Controls and algorithms to calibrate, send data to cloud

^{*}Hornbostel, M. D. et al. Carbon N. Y. 56, 77-85 (2013)

Thank You

PARC & Energy ETC

Dr. Clinton J. Smith, Member of the Research Staff
clinton.smith@parc.com

REFERENCE SLIDES

Project Budget

Project Budget: Pre-award began November 2017. First quarter began

1/1/19.

Variances: Proceeding according to budget.

Cost to Date: 11% of budget spent to date.

Budget History										
, ,	.7- FY 2017 ast)	FY 2018 (current)			4/30/2017 nned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$21,588	\$5,397	\$397,385	\$99,346	\$81,920	\$20,480					

Project Plan and Schedule (1)

Task Number	Task Name		Q1			Q2			Q3		Q4			Q1		Q2	
	Materials and Democities Mathed Development (MA MA)	Jan	Feb	Mar	Apr	May	Jun .	Jul A	lug Sep	Oct	Nov	Dec	Ján	Feb Ma	Apr	May	Jun
1	Materials and Deposition Method Development (M1–M10)		<u> </u>	<u> </u>			_		_	+	\vdash		-	_	+-		
1.1	Quantify thermistor material performance (M1–M3)						-		_	+			-	-	+-		
M1.1.1	Thermistor material precision and accuracy of 0.05 °C (M3)		<u> </u>	<u> </u>	<u> </u>								-	_	+-		
1.2	Quantify adsorption properties of sorbent and binder material recipes (M1-M10)									-			-		+		
M1.2.1	Sorbent mixture achieves CO2 adsorption efficiency of 50% (M7).	+	-	-	-		-	\perp	-	-			-	_	+		
M1.2.2	Sorbent mixture achieves CO2 adsorption efficiency of 75% (M10).		_	_			_	_					-	-	+		
1.3	Develop deposition methods of candidate sorbent mixtures (M1–M10)	-	\blacksquare				_	\perp	_				_	_	+-		
M1.3.1	Heat transfer efficiency from sorbent to thermistor of 50% achieved (M7).	+	-				-	\perp	_				-	_	+		
M1.3.2	Heat transfer efficiency from sorbent to thermistor of 70% (M10).		<u> </u>								<u> </u>		_	_	+-		
2	Sensor Development & Testing (M1-M13)														+-		
2.1	Modeling of Sensor Architecture (M1–M7)	\vdash	\blacksquare					-		+			-		+-		
M2.1.1	A thermal model delivered (M3)	-	-	<u> </u>	1		_	\perp		_			_		+		
M2.1.2	Candidate sensor architecture designs delivered (M7)	_						1									
2.2	Sensor circuitry development (M1–M8)		T														
M2.2.1	Laboratory apparatus to test sensors built (M3).			<u> </u>	1												
M2.2.2	Sensor circuitry interfaces with benchtop equipment (M5)					•											
M2.2.3	Custom electronics to measure thermistor material resistance delivered (M8)								*								
2.3	Absolute CO2 concentration measurement (M3-M13)																
M2.3.1	The steady state readout at 0 ppm, and 2000 ppm CO2 will be quantified with 500 ppm precision (M10)										•						
M2.3.2	The steady state readout at 0 ppm, 800 ppm, and 2000 ppm CO2 will be quantified with 100 ppm precision. (M13)												*				
2.4	Interferent mitigation, regeneration (M6-M10)									i							
M2.4.1	Regeneration cycle returns sensor response to baseline (M10)										+						
2.5	Sensor performance quantification (M4-M13)																
M2.5.1	Test matrix representative of application conditions drafted (M6)						+										
M2.5.2	CO2 sensor detection limit of 200 ppm demonstrated (M9)									+							
G/NG2.5	CO2 sensor precision <100 ppm w/ <1 minute response, & 100-2000 ppm dynamic range (M13)																
3	Electronics Development (M7–M13)																
3.1	Develop electronics specifications (M7–M10)							-		1							
M3.1.1	Electronics design delivered (M10).									+							
3.2	Fabricate electronics (M10-M13).									1							
M3.2.1	Electronics platform measures resistance changes associated with 0.05 C . (M13)												+				
3.3	Interoperability Assessment and Commissioning Plan (M9-M13)														1		
M3.3.1	A method, hardware, or software is delivered which enables connection of the team electronics to the BMS (M13).												+				
4	Enclosure Design (M1-M13)						+	+	$\overline{}$	÷			=				
4.1	Specify analyte exposure conditions & design candidate systems (M1–M3)												\neg		1		
M4.1.1	Enclosure specifications document delivered (M3).				+								\dashv				
M4.1.2	Candidate enclosure designs delivered (M3).				+								\dashv				
4.2	Fabricate enclosure(s) based on thermal modeling results (M9–M13)	\dagger					\neg						=,		+		_
M4.2.1	Mechanical systems built and ready for laboratory testing . (M13)	+	+										+		+		_
	meeting of terms want and ready for inspiratory testing . (HILS)			_					_				_				_

Project Plan and Schedule (1)

Analysis of BMS CO2 control data (M1-M4) Figures of merit are verified using existing BMS historical data (M4). System Integration & Testing (M14-M18) Develop embedded program (M14-M15) Embedded control software delivered (M15) Deploy the system to office environments (M16-M18) CO2 sensor system streams data useful for DCV (M18). Data Analysis & Algorithm Optimization (M4-M13)	
Figures of merit are verified using existing BMS historical data (M4). System Integration & Testing (M14-M18) Develop embedded program (M14-M15) Embedded control software delivered (M15) Deploy the system to office environments (M16-M18) CO2 sensor system streams data useful for DCV (M18).	
Develop embedded program (M14-M18) Embedded control software delivered (M15) Deploy the system to office environments (M16-M18) CO2 sensor system streams data useful for DCV (M18).	
Develop embedded program (M14–M15) Embedded control software delivered (M15) Deploy the system to office environments (M16–M18) CO2 sensor system streams data useful for DCV (M18).	
Embedded control software delivered (M15) Deploy the system to office environments (M16-M18) CO2 sensor system streams data useful for DCV (M18).	
Deploy the system to office environments (M16-M18) CO2 sensor system streams data useful for DCV (M18).	
CO2 sensor system streams data useful for DCV (M18).	
Data Analysis & Algorithm Optimization (MA M12)	<u> </u>
Data Analysis & Algorithm Optimization (M4-M13)	
Develop algorithms for quantifying CO2 concentration. (M4-M13)	
Algorithms for compensating for humidity delivered. (M13)	
Perform signals analysis on thermally modulated signals (M4–M13)	
Algorithms to produce concentration readings from thermally modulated signals will be delivered (M13).	•
Data Analysis & Algorithm Optimization (M14-M17)	
Develop algorithms for quantifying CO2 concentration. (M14-M17)	
CO2 precision <50 ppm & drift <50 ppm/year (M17)	
Refine & port algorithms from benchtop to electronics or cloud (M14-M17)	
Intellectual Property (M1–M3)	
The IP management plan signed by all relevant parties & approved by BTO (M3)	
Technoeconomic Analysis (TEA) and Cost Model (M1-M13).	
First version of completed TEA including estimates of all constituent costs (M10).	
, , , , , , , , , , , , , , , , , , , ,	
•	
, ,	
,	
, , ,	
,	
•	
, ,	
(M16)	
Final report on transition (M18).	
	Algorithms for compensating for humidity delivered. (M13) Perform signals analysis on thermally modulated signals (M4–M13) Algorithms to produce concentration readings from thermally modulated signals will be delivered (M13). Data Analysis & Algorithm Optimization (M14–M17) Develop algorithms for quantifying CO2 concentration. (M14–M17) CO2 precision <50 ppm & drift <50 ppm/year (M17) Refine & port algorithms from benchtop to electronics or cloud (M14–M17) Ported algorithms meet Milestones 6a.1.1, 6a.2.1, and 6b.1.1. (M17) Market Transformation (M1–M13) Intellectual Property (M1–M3) The IP management plan signed by all relevant parties & approved by BTO (M3) Technoeconomic Analysis (TEA) and Cost Model (M1–M13). First version of completed TEA including estimates of all constituent costs (M10). Updated TEA delivered (M13). Market Discovery (M1–M13) Competitive landscape survey and value chain mapping complete (M13). Technology to Market (T2M) Plan (M1–M13) T2M Draft Plan for advancing BTO funded technology toward commercial viability (M13). Market Transformation (M14–M18) Technoeconomic Analysis (TEA) and Cost Model (M14–M16) TEA will achieve a 3-year payback for at least one potential application (M16). Market Discovery (M14–M16) Preliminary commercialization strategy complete (M16). Technology to Market (T2M) Plan (M14–M16) Revised T2M Plan incorporating feedback received from DOE (M16) Transition Activities (M14–M18) Present at quarterly review meeting a transition plan and progress made securing transition partne (M16)