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What is MGI? O NGEESY

e MGI Goal — Accelerate materials development from Discovery to
Deployment

 MGI — Key part: Build data science infrastructure to Enable Data
Science & in particular Al

* MGI Outcome — Realizing the 4t Paradigm: Data-Intensive Scientific
Discovery & Development

Make it easier for industry & academia to do materials data science.

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

Systems
Property Design and Certification

Optimization |Integration Manufacturing
Discovery ‘Development ‘ ‘ ‘ ‘ ‘Deployment




MGI + NIST

e MGl Subcommittee, Committee on Technology, National Science &
Technology Council (First meeting 2012)

e Member Agencies (10): NIST, DOE, DOD, NSF, NASA, NIH, US
Geological Survey, National Nuclear Security Administration, DARPA,
and Office of Management and Budget

e National Institute of Standards & Technology
 The US National Metrology Lab
e Develop consensus standards to support
international trade and commerce




MGlI: Facilitating Data Science

Models

..

Py

QMacro
I Simulation )

Materials __hé.-i_-—_—__ w/ Targeted Properties

James Warren, NIST



MGlI: Facilitating Data Science

e Bank it: Data Ingestion &
Repositories

e Share it: Standards for data &
metadata

e Find it: Data Discovery

e Check it:
) Curatlon. o — Simulation Q
e Uncertainty Quantification in == ==
Data / Models '

Materials ———-==== w/ Targeted Properties

James Warren, NIST



Office of Data and Informatics

iSRDi

* continue existing
SRD distribution

* Quality Framework
* SRD Modes
* assess external need

* new product ideas
* SRMD5S
* data streams

-

[Research Data ]

* deal w/ data deluge

* provide advice to
MML bench staff

* gather best practices

* interpret external
rules & regulations

* reduce redundancy

* promote cooperation

* alternative

[Leadeiaisnn]

* partner with ITL

* represent MML
* NIST committees
* NSTC & IWGs
* NIH, NSF, DOE
* other Fed Govt
* Research Data
Alliance (RDA)

and coherent action

-

l Data Science ]

The 4" paradigm?

* will it stand next to
* theoretical
* experimental
* computational

* Cloud
« Statistical Learning

* Big Data




NIST Center for
Excellence in Advanced Materials
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NIST Materials Genome Initiative o INGST

Gateway to Materials Genome Information Standards and Technalogy
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Download Key Reports ~ External Stakeholders ~ Project Owners = MGI Projecis by Category

Quick Navigation by Project Category

¢ High Throughput Materials Science

CHiMaD

¥ Data and Model Dissemination

+ Data Capture




e https://mgi.nist.gov
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NIST Materials Genome Initiative wan 1 NJIST
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Download Key Reporis External Stakeholders Project Owners MG Projects by Category

NIST Projects Supporting the MGl: MGI Project Categories
S B e High Throughput Materials Science (5}
e Data and Model Dissemination (17)
MGI Projects by Category o Data Capfure (8}
e Markup Tools and Workflow (3}
+ Data and Model Dissemination o Software Tools {11}

e UQ Data Quality. Improved Models (9)
e Use Cases (4)

+ Data Capfture e Facilities (3]
e CHiMaD Fages {3}

r Software Tools

UG, Data Quality, Improved Models
v High Throughput Materials Science
b Use Cases

b CHiMaD Pages

b Markup Tools and Worlflow

+ Facilities



MGl @ NIST

 MGI: Facilitating data science

Standards for data, metadata, & uncertainty
* Repositories

e Data Discovery

e Uncertainty in Models

e MGI Examples / Prototypes
e Force Field Calculations
e Autonomous Phase Mapping



Repositories

* Bank it

https://materialsdata.nist.gov/

NIST

%
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Material Measurement Laboratory * 2%

R
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MNIST Rapositanies

Communities in NIST Repositories

Selec! a community o browss ils colections. [F] ndicales an mvitalional commanity, [Z] indicales an anchived
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« ASM Structural Materials Data Demaonsiration Project
« Chemical Sciences

CHiMaD Data Collections [R]
Community for Gregnhouse Gases

« Computational File Rapository

Expernmantal Dala Hepository

Genome in a Bottle

Heusler Phases: First Principles Simulations [R]

ICME Approach to Development of Lightweight 3GAHSS Vehicle Assembly [R]
ICME of Carbon Fiber Composites for Lightweight Vehicles [R]

MGl Catalogs

MICCoM Collections [R]

ManoRelease [H]

NISTDOE-EERE Advanced Automotive Cast Magnesium Alloys [R]

NIST Thermodynamics and Kinetics Test Space [H]

Porous Metals and Ceramics: Freeze-casting under microgravity and terrestrial
conditions

erialsdata.nist.gov

i a

St o e
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Search NIST Repositories

Browse

All of NIST Regositanies

My Account

Discover
Author

BRDA Demonstration Project: DT

AvE fracture vunaT for apozo] Customized DSpace repository for materials

State Variable Model for QPGSR0

synchratron Studies of Slot ie > ENables sharing of a variety of data types,

Thermal Conductivity of CVD D

TMS Springer Integrating Matern inCIUdIng teXt, |mage5, and Vldeo

Recently Added

Siti High-Throuahput Synchratran Difraction Dala of Multiple Principle Component Allg

ST



https://materialsdata.nist.gov/

NIST

Material Measurement Laboratory i %
materials

NIST Ropositories — Experimontal Data Repository ~ Diffusion Data —» View liom

Data Ctation: Searc

Campbell, Carelyn; Zhao, J-C; Henry, M. F.

Examination of Ni-base superalloy diffusion couples containing multiphase regions 3
(OR=1:1]

(2014-04-02)
httpz/hdl.handle.net/11256/22

Digital Identifier .

Affillation: National Institute of Standards and Technology, Metallurgy Division, Gaithersburg, MD 20899-8555, USA

General Electric Company, GE Global f 1 Circle, Niskay NY 12309, USA Brow:
Contact Email: carelyn campbell@nist.gov Allof b
Cal

Sul

Primary Publication Citation: Tith
M Is Sclence and Engineering A 407 (2005) 135-146 Aut
: This G
hitp:idx.dol.org/10.1016]. msea,2005,07.016 e | ate d WO r k i
Tith

Aul

s " R (2002) Development of a diffusion mobility database for Ni-base
superalioys. Acta Mater 50:775-792 DOI: htip:/idx_dol.org/0.1016/51358-6454(01)00383-4 My Ac
Login

Campbell CE, Zhao JC, Henry MF (2004) C: i of experi and simulated i Ni-base
superalioy diffusion couples. J Phase Equil Dif 25 (1):6-15. DOI: http:/idx.doi.ong/10.1361/105497 10417966

Abstract:

Four Ni-base superalloy diffusion couples with multiphase regions were studied. The diffusion couples contained
single-phase (gamma ), two phase{ gamma +MC carbide) and three-phase { gamma + gamma prime+MC carbide)
regions. Measured average composition profiles were in good agreement with the diffusion simulation predictions.
The measured and predicted phase fraction profiles showed similar trends; however, there were some discrepancies
in the predicted position of the gamma +gamma prime + MC/ gamma +MC boundary. Phase fraction profiles and
optical li hy were used to d the type and direction of the moving phase region boundaries.

Login

Funding Agency & Award No.:

This work was supported by the Defense Advanced R h Project Agency (DARPA) under the accelerated
Insertion of Materials (AIM) Program (Grant number F33615-00-C-5215) with Dr. L. Christodoulou as the project
manager and Dr. Rollie Dutton as the project monitor. The authors would like to express their appreciation to N.

Saunders for the use of his thermodynamic database for Ni alloys and to Louis u ca itch
Hammond and Karen Denike for their experimental support. a S

-
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Files in this item

\ Name: R95-RB8-axpsimultxt View/Open
™ Slze: 25.32Kb
Format: Text file
Description:
Experimental and simulate composition profiles for
the ABB/R9S diffusion couple at 1150 C for 1000 h

\ Name: r95r88-1000h-labe ... View/Open
e | Size: 58.76Mb
Format: TIFF image
Description:

Micrograph of R85/R88 diffusion couple after 1000

The following license files are associated with this item:

+ Creative Commons

This item appears in the following Collection(s)
« Diffusion Data

Offer licenses with
attribution 3.0

Except where otherwise noted,

@gﬁﬂve Universal
mons

Related items

Showing items related by title, author, creator and subject.

Further Studies on the Nickel-Aluminum System. |. The B-Ni2Al3 Phase Fields

Taylor, A; Doyle, N.J. (1972-01-31)

MNew lattice parameter and density results have been obtained for alloys in the fl-NiA1 and 6-Ni2A13 phase fields of
the nickel-aluminum system. The lattice parameter of the fl-NiAl phase (CsCl-type) falls linearly from ...

Elemental vacancy diffusion for fcc and hep structures

Angsten, Thomas; Mayeshiba, Tam; Wu, Henry; Morgan, Dane (2014-08-08)

This work demonstrates how databases of diffusion-related properties can be developed from high-throughput ab
initio calculations. The formation and migration energies for vacancies of all adequately stable pure elements ...



Data Discovery



Search for resources: Materials Resource Registry

1 H 806 . Materials Resource Registry Curation System
Find it =

-k

All text is
searched

\' DFT =

4 results

r—. J
All Resources Organizations Data Collections

l Custom View

MPinterfaces

Change Custom View
Resource Type: e
@ All Resources
(¢ Organization

¢ Data Collection
) Repasitory

o Project Archive
¢ Database

¢ Dataset subject

0 Service

¢ Informational Site 7

o Software referencelURL

description

AFLOW
title

description

API

Datasets Services Informational Sites Software

Resource Details Go To

MPinterfaces

MPinterfaces is a python package that enables high throughput Density
Functional Theory (DFT) analysis of arbitrary material interfaces {ligand
capped nanoparticles, surfaces in the presence of solvents and hetero-
structure interfaces) using VASP, VASPsol, LAMMPS, materialsproject
database as well as their open source tools and a little bit of ASE.

Python, Density Functional Theory (DFT), materials interfaces, surfaces, VASP,
VASPsol, LAMMPS, MaterialsProject, ASE

httpy//henniggroup.github.io/MPInterfaces/

Resource Detalls  Go To

AFLOW

Aflow is a globally available database of 647,815 material compounds



Materials Data Curation System

g ) % %
User . i

e Bank it: “smart” data ingestion tools &
repository

Literature

. . Search Community Developed

e Share it: tools to automatically convert % Resuts  Shared Data & Metadata Models
data into and out of standard formats. @z l —
. . . . mages Yata e & Metadata
e Find it: search via Website or API 8 Nowadats e (any format)

Exporter

* Federated search | ‘_’g
St wsersaips A

Data Management
& Search Engine

Harvester

- Data Images
Data Provider Metadata Large Files
BLOBs
Database Large Dataset

Repository

Dima (JOM 2016) Informatics Infrastructure for the
Materials Genome Initiative.



Model Uncertainty

(Check it)

Molecular Dynamics

Finite Element Analysis
Thermodynamics (CALPHAD)
etc.

NIST Uncertainty Machine

e Use probabilistic models to assess
uncertainty — e.g. confidence, or credible
intervals.

@ NIST Uncertainty Machit x

= C' | @& Secure | https//uncertainty.nist.gov
NIST Uncertainty Machine

User's manual available here
Instructions -

+ Select the number of input quantities.

» Change the quantity names and update them if necessary.

+ For each input quantity choose its distribution and 1is
parameters.
Choose the number of realizations.

= Wrte the defimition of the output quantity in a valid R
EXPIEsS10n.

+ Choose and set the correlations if necessary.

+ Run the computation.

'
! Drop
'

Random number generator seed:
Number of input quantities:

Names of input quantities:
0 B
Update quantity names

bul Gaussian (Mean, StdDev) ¥ _

Number of realizations of the output quantity:
1000000

@
Definition of output quantity (R expression): .

B Symmetrical coverage intervals
B Comelations

Run the computation




Bank it
Share it
Find it
Use it

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

Materials Data Facility

Streamlined and automated data sharing,
discovery, access, and analysis

lan Foster (foster@uchicago.edu)t?,
Ben Blaiszik!? (bla|32|k?uch|ca%o.edu), _
Jonathon Gaff?, Lo%an Ward?, Kyle Chard?, Jim
r

_u%nel,
Rachana Ananthakrishnan?!, Steven Tueckel

Michael Ondrejcek3, Kenton McHenry3, John Towns3

University of Chicago?, Argonne National Laboratory?, University of lllinois at Urbana-
Champaign?®

materialsdatafacility.org
globus.org

) Materials Genome Initiative

CHIMaD @ (HICAES

ter for Hierarchical Materlals Design



poes MATERIALS

v dinde” STREAMLINE AND AUTOMATE

Publication Discovery

Bank it

Share it Data ingestion

Find it « Search, query, and access
_ ldentify datasets with datasets in modern ways

Use it persistent identifiers (e.q.,

 Automatically index flexible

DOI or Handle
) metadata and harvest file

Describe datasets with contents
appropriate metadata and Resource Data _ _
provenance / Published Resuits "\  Provide simple user
/' Publishable Results \ interfaces (c.f., Google and

/ Derived Data \ Amazon l

Verify dataset contents over
time

/ Working Data \
PPPDB

Extract key polymer properties from literature via
natural language processing and crowdsourcing

Handle big (and small) data:
We have already ingested

datasets with > 1.5 M files and
>1.5TB in size

Build interfaces to explore curated x and other property values -
Includes 375 polymer-polymer values and 1,014 polymer-solvent values

e CHIMaD @ CHiches

Standards and Technology

ter for Hierarchical Materlals Design
U.S. Department of Commerce



STREAMLINE AND AUTOMATE: FOUR KEY STEPS

e Simplify data publication, regardless of size, type,
and location

e Automate data and metadata ingest, to enable
capture of many valuable materials datasets

 Enable unified search of disparate materials data
sources

e Deploy APIs to foster community development,
data creation, and data consumption




Sharing Data and Tools



A New Model for Materials Genome
Initiative - Driven Research:
“High-throughput Experimental Materials
Collaboratory (HTEMC)”

Zachary T. Trautt!, Andriy Zakutayev?,
Martin L. Green!, John Perkins?

INational Institute of Standards and Technology (NIST)
’National Renewable Energy Laboratory (NREL)

martin.green@nist.gov



Collaboratory

Collaboratory: a 1989 neologism (William A. Wulf, Computer
Scientist at University of Virginia):

“...defined by...a ‘center without walls,’ in which the nation’s
researchers can perform their research without regard to physical
location, interacting with colleagues, accessing instrumentation,
sharing data and computational resources, .... accessing
Information in digital libraries.”

e The HTEMC would consist of:

* An integrated, delocalized network of high-throughput synthesis
and characterization tools

e A best-in-class materials data management platform, consisting of
NIST (and other) software



Platform Integration Model

[Data Dissemination Registries

Materials
Resource Registry

Member Institute IDatabase/Stmctured I

I

Management System

" Data / Metadata
I Laboratory Information I

| Data Transfer Grid | High-Throughput
Experiment

Resource Registry

| Data Transfer Grid |

I File/Collection Rep ositoryl

¥

I File/Collection Rep ositoryr

Database / Structured
Data / Metadata

MGI at NIST

Y

| Instruments/Computing |

i
ssssngduunsnnsunun?

Mehber Institute

Laboratory Information j §.
Management System

| Data Transfer Grid |

namm snnsnnsmnnnnnnnly

Database / Structured
Data / Metadata

e Standardization of data and metadata

I File/Collection Rep ositoryl

IInstrumentleomputingI *Use Of d regiStry

e Standardization of data exchange methods

ixpaes

au,
fab

Member Institute

Laboratory Information
Management System

J Data Transfer Grid |

Database / Structured
Data / Metadata

I File/Collection Rep ositoryl

IInstrumentstomputing I

User Institute
Data Transfer Grid |




Fducation
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Annual Machine Learning for Materials Research:
Bootcamp and Workshop

“inu

* Host: University of Maryland https://nanocenter.umd.edu/events/mimr/

e Dates:  TBD (~June / July)
* Location: University of Maryland, College Park, MD

The event will introduce materials researchers from industry, national laboratories, and academia to machine
learning theory and tools for rapid materials data analysis.

Bootcamp
Three days of lectures and hands-on exercises covering a range of data analysis topics from data pre-processing

through advanced machine learning analysis techniques. Example topics include:

J Identifying important features in complex/high dimensional data

J Visualizing high dimensional data to facilitate user analysis.

J Identifying the fabrication ‘descriptors’ that best predict variance in functional properties.
J Quantifying similarities between materials using complex/high dimensional data

The hands-on exercises will demonstrate practical use of machine learning tools on real materials data.
Attendees will learn to analyze a range of data types from scalar properties such as material hardness to high

dimensional spectra and micrographs.

Workshop
Talks by top researchers in the field as well as open discussions in which attendees can discuss their data

analysis needs with experts.

UNIVERSITY OF STANFORD : HNS HOPKI
NIST MARYLAND OAK RIDGE JOFINS HOPKINS

UNIVERSITY National Laboratory UNIVERSITY



Bootcamp and Workshop

g

https://nanocenter.umd.edu/events/mimr/

MACHINE LEARNING FOR MATERIALS RESEARCH: BOOTCAMP

UNSUPERVISED LEARNING
THEORY & ALGORITHMS
THU &/30

SUPERVISED LEARNING
THEORY, DATA, ALGORITHMS
WED 6/29

DATA FUNDAMENTALS
DATA PREPROCESSING
TUE 6128

Data Handling Theory

» Cross Validation Similarity Measures
Latent Variable Analysis
Spectral Unmixing
Matrix Factorization
Clustering

Filtering: Noise Smoothing
Background Subtraction
Feature Extraction

= Cross-comelation Wavelets

L] Edggs
= (Closed Boundaries

= Prediction

Algorithms
= Regularized Least Squared

= Support Vector Machines

= Shapes
= Meural Networks

= Decision Trees & Ensemble Leaming

= Genetic Programming

MACHINE LEARNING FOR MATERIALS RESEARCH: WORKSHOP

WORKSHOP SESSION 2
FRI 711 MORNING

WORKSHOP SESSION 1
THU 6/30 EVENING

Organizers

A. Gilad Kusne
National Institute of
Standards &
Technology
Materials
Measurement
Science Division

Alexei Belianinov
Oak Ridge Mational
Laboratory

Center for Nanophase
Materials Sciences

Daniel Samarov
National Institute of
Standards and
Technology
Information
Technology
Laboratory

Tim Mueller
John Hopkins
University
Department of
Materials Science &
Engineering

Stefano Ermon
Stanford University
Department of

Computer Science

Ichiro Takeuchi
University of
Maryland, College
Park

Department of
Materials Science &
Engineering

Annual Machine Learning for Materials Research:

'h

UNIVERSITY

UNIVERSITY OF STANFORD HNS HOPKI
NIST MARYLAND OAK RIDGE JOFINS HOPKINS

UNIVERSITY

National Laboratory



MGI Examples

e Force Field Calculations (Logan Ward, Northwestern
Univ)

 Autonomous Phase Mapping



Building a machine learning model using MDF

Example: Building force-field potentials from different datasets

Data resources: 3 DFT datasets with Aluminum data
1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources

Using only original data

Holdout Set Training Set

6 S c
o o
(- C 44
(O QY ()
-] >S5 3-
O O

2 .
D2 0
L L 1
T T T T T T 0 T T T T T T
00.030 0.035 0.040 0.045 0.050 0.055 0.060 0.062 0.064 0.066 0.068 0.070
MAE (eV/A) MAE (eV/A)

MAE — Mean absolute error
Method: Botu et al. JPCC. (2017)


http://khazana.uconn.edu/
http://materialsdata.nist.gov/

Building a machine learning model using MDF

Example: Building force-field potentials from different datasets

Data resources: 3 DFT datasets with Aluminum data
1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources

Including Diffusion Dataset Using only original data
Holdout Set Training Set

5 3

(- C 44

QD 4 Q

- g_s-

U -

D2 D

L L 11

. T T . r . 0 T r T T . .
%0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.062 0.064 0.066 0.068 0.070
MAE (eV/A) MAE (eV/A)

29

Method: Botu et al. JPCC. (2017)


http://khazana.uconn.edu/
http://materialsdata.nist.gov/

Building a machine learning model using MDF

Example: Building force-field potentials from different datasets

Data resources: 3 DFT datasets with Aluminum data
1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources

Including D + T,,, Dataset Including Diffusion Dataset Using only original data
Holdout Set Training Set \
> 6 >N
@) @)
(- C 44
D 4- v
- 5.3
o o N
D2 0
L L 11 ‘
°0.030 0.035 0.040 0.045 0.050 0.055 % 0.060 0.062 0.064 0.066 0.068 0.070
MAE (eV/A) MAE (eV/A)

Better performance in original application: No new DFT calculations

Method: Botu et al. JPCC. (2017)

30
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Al for Analysis

Synthesize | —>

Characterize

—> Analyze

Artificial Intelligence

Physics Knowledge
& Databases




Autonomous Metrology

Physics Knowledge
& Databases

Artificial Intelligence

Synthesize

Characterize

—_> Analyze

|




Using Al to Identify Structural Phase Maps

Structural Phase Map

e Structure as a function of fabrication
parameters (e.g. composition,
temperature, pressure, etc.)

e Use map to predict structure of new
materials.

e Structure is good predictor of important
properties.

Ni

Phase Equilibria in Iron Ternary Alloys (1988) #60



Structural Phase Mapping: Edisonian Approach

Traditional / Edisonian Approach:
e Fabricate sample

* Measure structure

* Point placed on phase diagram
* Repeat

* This process takes years.

Phase Equilibria in Iron Ternary Alloys (1988) #60



Phase Mapping: High-Throughput Approach

e Fabricate hundreds-thousands of samples -> HiTp Synthesis
e Measure all samples -> HiTp Characterization
e Rapid phase mapping -> Machine Learning

Combi Library for Ternary Spread Estimated Phase Map

Diffraction Patterns Fe

Cluster

APL Materials (2016)
Vo
Analysis L

Composition—structure—
property mapping in high-
throughput experiments:
Turning data into knowledge

Diffraction Intensity

43.05 4355 4405 4455 4505 4555 46.05 46.55
20




Phase Mapping: High-Throughput Approach

* Measurement is a time / resource sink
e For wafer of 500+ samples:
e |n Lab: Takes weeks-months

e Synchrotron: Takes 5+ Hours (Every second counts)

Stafofd Syncotron Radiation
Mn-Ni-Ge library Bruker DS Lightsource
535 samples 30 Minutes per sample 30 seconds per sample

2 weeks! 4.5 hours




Autonomous Metrology: Motivation

Why use Al to just analyze data? Put it on control of the
equipment!

Instead of measuring all the samples, measure only the

ones that count -> Al for optimal experiment design Bruker D8
30 Minutes per sample
2 weeks!

e Minimum measurements -> Maximum knowledge
e Save on worker hours and instrument time.
e Startit up and let it run.

 Minimize human bias: experiment design, execution,
data analysis F

* Replaced with traceable algorithmic bias £ b H= 25 ’”””“'
Stanford Synchrotron Radiation
Lightsource

30 seconds per sample

4.5 hours

* Democratize Science
e Simplify equipment use
e Collaboratory

Mn-Ni-Ge library
535 samples



Autonomous Phase Mapping: MGl + Al

Mn

e For Optimal Experiment Design, Al needs access to prior data
+ physics theory
e Al Interface with Databases

e Import pertinent data and metadata
e AFLOW (DFT), Inorganic Crystal Structure Database (Experimental)

Ni Ge
e Theory built in (e.g. Gibbs Phase Rule, X-ray diffraction) Data from ICSD
* Constraint Programming

* Access to physics modeling software Mn

e Al Interface with Equipment
e X-ray diffraction systems
e Bruker D-8, SLAC HiTp X-ray diffraction system
e Data ingestion tools
Ni Ge

e Automatic data storage, MDCS standards Data from AFLOW



Autonomous Phase Mapping

Estimated phase boundary {0.45

Theory-based sample 104

10.35

Query

oo N

Misclassification Probability

AL
=

AL

Al is controlling X-ray diffraction systems at SLAC & in the lab!

100

80

60

40

20 |

100

80

60

40 r

20 |

— Autonomous F-score
=  Sequential F-score

50 100 150 200 250
Measurement Number

50 100 150 200 250
Measurement Number




Autonomous Temperature Phase Mapping

e Developing 2 systems for autonomous composition & temperature phase
mapping.
e Minimum measurements for maximum knowledge.

()
o
>
o )
L@ ©
5 3
Y, % 75 9
~E BB
o, s 2
i, Ay DTN =, e
% |q__)

Wikipedia: ternary_cooling.jpg




Autonomous Metrology

e Past: Al is given a pool of samples (100s-1,000s).

Physics Knowledge Artificial Intelligence
& Databases

Synthesize | — > ~Characterize - Analyze

1
|| S

Test case:
Combinatorial Library

=2 eZ,




Autonomous Materials Science

e Current: Place Al in control of Synthesis.

Physics Knowledge Artificial Intelligence
& Databases

Synthesize | —> |  Characterize —_> Analyze




MGI + Al; Contacts

MGI — Jim Warren (MGI Director), james.warren@nist.gov

Materials Data Curation System — Zach Trautt, zachary.trautt@nist.gov

Materials Data Facility — lan Foster, foster@uchicago.edu

Materials Resource Registry — Chandler Becker,
chandler.becker@nist.gov

Collaboratory — Martin Green, martin.green@nist.gov

Autonomous Metrology / Lab — A. Gilad Kusne, aaron.kusne@nist.gov

Questions?

i Computational
Tools

Experimental Digital
Tools DCata /

Materials Innovation
Infrastructure

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY
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