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MGI + AI?
What is MGI?
• MGI Goal – Accelerate materials development from Discovery to 

Deployment
• MGI – Key part: Build data science infrastructure to Enable Data 

Science & in particular AI
• MGI Outcome – Realizing the 4th Paradigm: Data-Intensive Scientific 

Discovery & Development
Make it easier for industry & academia to do materials data science.

Discovery Development

Property 
Optimization

Systems 
Design and 
Integration
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Deployment



MGI + NIST

• MGI Subcommittee, Committee on Technology, National Science & 
Technology Council (First meeting 2012)

• Member Agencies (10): NIST, DOE, DOD, NSF, NASA, NIH, US 
Geological Survey, National Nuclear Security Administration, DARPA, 
and Office of Management and Budget

• National Institute of Standards & Technology
• The US National Metrology Lab
• Develop consensus standards to support
international trade and commerce



MGI: Facilitating Data Science
Data Models

Simulation

Experiment

Quantum MacroMicroNano

Materials w/ Targeted Properties
James Warren, NIST



MGI: Facilitating Data Science

• Bank it: Data Ingestion & 
Repositories

• Share it: Standards for data & 
metadata

• Find it: Data Discovery
• Check it: 

• Curation
• Uncertainty Quantification in 

Data / Models

Data Models

Simulation

Experiment

Quantum MacroMicroNano

Materials w/ Targeted Properties

James Warren, NIST
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MGI @ NIST

• MGI: Facilitating data science
• Standards for data, metadata, & uncertainty
• Repositories
• Data Discovery
• Uncertainty in Models

• MGI Examples / Prototypes
• Force Field Calculations
• Autonomous Phase Mapping



Repositories

• Bank it

https://materialsdata.nist.gov/

Customized DSpace repository for materials
➢ Enables sharing of a variety of data types, 

including text, images, and video  

https://materialsdata.nist.gov/


Digital Identifier 

Related Work

Data files

Offer licenses with 
attribution 3.0 
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Data Discovery



Search for resources: Materials Resource Registry

All text is
searched

• Find it



Materials Data Curation System
• Bank it: “smart” data ingestion tools & 

repository
• Share it: tools to automatically convert 

data into and out of standard formats.
• Find it: search via Website or API
• Federated search

Dima (JOM 2016) Informatics Infrastructure for the 
Materials Genome Initiative. 



Model Uncertainty
• (Check it)
• Molecular Dynamics
• Finite Element Analysis
• Thermodynamics (CALPHAD)
• etc.

• NIST Uncertainty Machine
• Use probabilistic models to assess 

uncertainty – e.g. confidence, or credible 
intervals.



Ian Foster (foster@uchicago.edu)1,2,
Ben Blaiszik1,2 (blaiszik@uchicago.edu),

Jonathon Gaff1, Logan Ward1, Kyle Chard1, Jim 
Pruyne1, 

Rachana Ananthakrishnan1, Steven Tuecke1

Michael Ondrejcek3, Kenton McHenry3, John Towns3
University of Chicago1, Argonne National Laboratory2, University of Illinois at Urbana-

Champaign3

materialsdatafacility.org
globus.org

Materials Data Facility
Streamlined and automated data sharing, 

discovery, access, and analysis

• Bank it
• Share it
• Find it
• Use it



Publication REST APIs Discovery

• Data ingestion

• Identify datasets with 
persistent identifiers (e.g., 
DOI or Handle)

• Describe datasets with  
appropriate metadata and 
provenance 

• Verify dataset contents over 
time

• Handle big (and small) data: 
We have already ingested 
datasets with > 1.5 M files and 
> 1.5 TB in size

• Search, query, and access 
datasets in modern ways 

• Automatically index flexible 
metadata and harvest file 
contents

• Provide simple user 
interfaces (c.f., Google and 
Amazon) 

Materialsdatafacility.org

PPPDB
• Extract key polymer properties from literature via 

natural language processing and crowdsourcing
• Build interfaces to explore curated χ and other property values
• Includes 375 polymer-polymer values and 1,014 polymer-solvent values

STREAMLINE AND AUTOMATE

• Bank it
• Share it
• Find it
• Use it



• Simplify data publication, regardless of size, type, 
and location

• Automate data and metadata ingest, to enable 
capture of many valuable materials datasets

• Enable unified search of disparate materials data 
sources

• Deploy APIs to foster community development, 
data creation, and data consumption

STREAMLINE AND AUTOMATE: FOUR KEY STEPS



Sharing Data and Tools



Zachary T. Trautt1, Andriy Zakutayev2, 
Martin L. Green1, John Perkins2

1National Institute of Standards and Technology (NIST) 
2National Renewable Energy Laboratory (NREL)

martin.green@nist.gov

A New Model for Materials Genome
Initiative - Driven Research: 

“High-throughput Experimental Materials 
Collaboratory (HTEMC)”



Collaboratory

• The HTEMC would consist of:
• An integrated, delocalized network of high-throughput synthesis 

and characterization tools

• A best-in-class materials data management platform, consisting of 
NIST (and other) software

Collaboratory: a 1989 neologism (William A. Wulf, Computer 
Scientist at University of Virginia): 

“…defined by…a ‘center without walls,’ in which the nation’s 
researchers can perform their research without regard to physical 
location, interacting with colleagues, accessing instrumentation, 
sharing data and computational resources, …. accessing 
information in digital libraries.”



MGI at NIST

Platform Integration Model

• Standardization of data and metadata
• Standardization of data exchange methods
• Use of a registry



Education



Annual Machine Learning for Materials Research: 
Bootcamp and Workshop

• Host: University of Maryland https://nanocenter.umd.edu/events/mlmr/
• Dates: TBD (~June / July)
• Location: University of Maryland, College Park, MD

The event will introduce materials researchers from industry, national laboratories, and academia to machine 
learning theory and tools for rapid materials data analysis. 

Bootcamp
Three days of lectures and hands-on exercises covering a range of data analysis topics from data pre-processing 
through advanced machine learning analysis techniques. Example topics include:
• Identifying important features in complex/high dimensional data 
• Visualizing high dimensional data to facilitate user analysis.
• Identifying the fabrication ‘descriptors’ that best predict variance in functional properties.
• Quantifying similarities between materials using complex/high dimensional data 
The hands-on exercises will demonstrate practical use of machine learning tools on real materials data. 
Attendees will learn to analyze a range of data types from scalar properties such as material hardness to high 
dimensional spectra and micrographs.

Workshop
Talks by top researchers in the field as well as open discussions in which attendees can discuss their data 
analysis needs with experts.



Annual Machine Learning for Materials Research: 
Bootcamp and Workshop

https://nanocenter.umd.edu/events/mlmr/



MGI Examples

• Force Field Calculations (Logan Ward, Northwestern 
Univ)

• Autonomous Phase Mapping



Example: Building force-field potentials from different datasets
Data resources: 3 DFT datasets with Aluminum data

1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources

Building a machine learning model using MDF

Method: Botu et al. JPCC. (2017) 

Using only original data

Training SetHoldout Set

MAE – Mean absolute error

http://khazana.uconn.edu/
http://materialsdata.nist.gov/


Example: Building force-field potentials from different datasets
Data resources: 3 DFT datasets with Aluminum data

1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources
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Building a machine learning model using MDF

Method: Botu et al. JPCC. (2017) 

Using only original data

Training SetHoldout Set

Including Diffusion Dataset

http://khazana.uconn.edu/
http://materialsdata.nist.gov/


Example: Building force-field potentials from different datasets
Data resources: 3 DFT datasets with Aluminum data

1 dataset from khazana.uconn.edu, 2 datasets from materialsdata.nist.gov

Result: Improved performance by integrating data sources
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Building a machine learning model using MDF

Method: Botu et al. JPCC. (2017) 

Using only original data

Training SetHoldout Set

Including Diffusion DatasetIncluding 𝐷𝐷 + 𝑇𝑇𝑚𝑚 Dataset

Better performance in original application: No new DFT calculations

http://khazana.uconn.edu/
http://materialsdata.nist.gov/


AI for Analysis

Synthesize Characterize Analyze

Physics Knowledge
& Databases

Artificial Intelligence



Autonomous Metrology

Synthesize Characterize Analyze

Physics Knowledge
& Databases

Artificial Intelligence



Using AI to Identify Structural Phase Maps
Structural Phase Map
• Structure as a function of fabrication 

parameters (e.g. composition, 
temperature, pressure, etc.)

• Use map to predict structure of new 
materials.

• Structure is good predictor of important 

(αFe)

(αCo,Ni)

Fe

Co Ni
Phase Equilibria in Iron Ternary Alloys (1988) #60

properties.



Structural Phase Mapping: Edisonian Approach
Traditional / Edisonian Approach:
• Fabricate sample
• Measure structure
• Point placed on phase diagram
• Repeat
• This process takes years.

(αFe)

(αCo,Ni)

Fe

Co Ni
Phase Equilibria in Iron Ternary Alloys (1988) #60

Ni 20%, Co 70%, Fe 10% 



Phase Mapping: High-Throughput Approach
• Fabricate hundreds-thousands of samples -> HiTp Synthesis
• Measure all samples -> HiTp Characterization
• Rapid phase mapping -> Machine Learning

2θ
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APL Materials (2016) 
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Phase Mapping: High-Throughput Approach
• Measurement is a time / resource sink
• For wafer of 500+ samples:
• In Lab: Takes weeks-months
• Synchrotron: Takes 5+ Hours (Every second counts)

Mn-Ni-Ge library
535 samples

Stanford Synchrotron Radiation 
Lightsource
30 seconds per sample
4.5 hours

Bruker D8
30 Minutes per sample
2 weeks!



Autonomous Metrology: Motivation
Why use AI to just analyze data? Put it on control of the 
equipment!
Instead of measuring all the samples, measure only the 
ones that count -> AI for optimal experiment design
• Minimum measurements -> Maximum knowledge
• Save on worker hours and instrument time. 
• Start it up and let it run.
• Minimize human bias: experiment design, execution, 

data analysis
• Replaced with traceable algorithmic bias
• Democratize Science

• Simplify equipment use
• Collaboratory Mn-Ni-Ge library

535 samples

Stanford Synchrotron Radiation 
Lightsource
30 seconds per sample
4.5 hours

Bruker D8
30 Minutes per sample
2 weeks!



Autonomous Phase Mapping: MGI + AI

• For Optimal Experiment Design, AI needs access to prior data 
+ physics theory

• AI Interface with Databases
• Import pertinent data and metadata
• AFLOW (DFT), Inorganic Crystal Structure Database (Experimental)

• Theory built in (e.g. Gibbs Phase Rule, X-ray diffraction)
• Constraint Programming
• Access to physics modeling software

• AI Interface with Equipment
• X-ray diffraction systems
• Bruker D-8, SLAC HiTp X-ray diffraction system
• Data ingestion tools

• Automatic data storage, MDCS standards

Data from ICSD
Ni

Mn

Ge

Data from AFLOW
Ni

Mn

Ge



Autonomous Phase Mapping

Autonomous F-score
Sequential F-score

Estimated phase boundary
Theory-based sample
Query
Measured samples
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AI is controlling X-ray diffraction systems at SLAC & in the lab!



Autonomous Temperature Phase Mapping

• Developing 2 systems for autonomous composition & temperature phase 
mapping.

• Minimum measurements for maximum knowledge.
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Wikipedia: ternary_cooling.jpg

 



Autonomous Metrology

Synthesize Characterize Analyze

Physics Knowledge
& Databases

Artificial Intelligence

Test case:
Combinatorial Library

• Past: AI is given a pool of samples (100s-1,000s).



Autonomous Materials Science

Synthesize Characterize Analyze

Physics Knowledge
& Databases

Artificial Intelligence

• Current: Place AI in control of Synthesis.



MGI + AI: Contacts

• MGI – Jim Warren (MGI Director), james.warren@nist.gov
• Materials Data Curation System – Zach Trautt, zachary.trautt@nist.gov
• Materials Data Facility – Ian Foster, foster@uchicago.edu
• Materials Resource Registry – Chandler Becker, 

chandler.becker@nist.gov
• Collaboratory – Martin Green, martin.green@nist.gov
• Autonomous Metrology / Lab – A. Gilad Kusne, aaron.kusne@nist.gov

Questions?

mailto:james.warren@nist.gov
mailto:zachary.trautt@nist.gov
mailto:foster@uchicago.edu
mailto:chandler.becker@nist.gov
mailto:martin.green@nist.gov
mailto:aaron.kusne@nist.gov
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