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Citrine Informatics

“Centaur” Materials Science
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Human and Machine > Human or Machine




- Citrine Informatics
Things Scientists Do With Data:

Conventional View of Informatics

Machine Learning
Predicts Properties

Collect Process Wl Visualize § Search Model Optimize Interpret < Curate &
Learn Evaluate
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Things Scientists Do With Data:

Citrine’s Vision

Machine Learning Will Be a Behind-the-Scenes Copilot for All of These

Collect Process [l Visualize | Search Optimize Interprets: Curate &
Learn Evaluate

Covered in today’s talk
Citrine also working in these areas—ask me
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Citrine Has a Unique Business Model

e Open Citrination’s data & infra available to everyone

« Open data (one of world’s largest collections of free materials data)
e Open PIF data standard

e Open-source lolo machine learning library

e Open-source API tools and tutorials

* Enterprise Citrination users pay to leverage Open data
while keeping internal data proprietary
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Industrial Applications &
Research
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Industrial Case Study #1

|solated dataset too small
for machine learning
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Industrial Case Study #2
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— Machine learning helped save
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materials characterization by
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Data-Driven Methods Give >10x Yield

Boost
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Oliynyk et al., Chem. Mater., 2016, 28 (20), pp 7324-7331
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Models Discriminate Similar Structures
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Deep Learning for Microstructure
Featurization

SEM Image Deep Learning Featurization  Vector of Textures Predictions

0.97
0.87
0.77
0.67
0.57
0.47
0.37
0.27
0.17

Probability density

0-
‘O@a,. . %15 Qe
v/ s, . 2
. ) ) . . . primary microconstituent
The Holm group at CMU is leading the way on open data and methods in machine learning for microstructure; see e.qg.
DeCost et al., UHCSDB: UltraHigh Carbon Steel Micrograph DataBase, IMMI (2017).




Citrine Informatics

Emerging Methods to
Accelerate Materials
Discovery
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Forest with Uncertainty Estimates for
Learning Sequentially (FUELS)

Perform random initial set of
experiments to create data set

k J

-

Train random forest model on data set

L J

Evaluate random forest model with
uncertainty estimates over all
candidates

l

Choose next candidate based on
selection strategy

!

Perform experiment

!

Test candidate meets
specifications?

o /{m Add experimental measurement to

data set
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Candidate Selection Strategy
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Predicted Fatigue Strength
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Test candidates
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Test Cases

* Four materials problems
1. Magnetocalorics (maximize magnetic deformation)
2. Superconduction (maximize critical temperature)
3. Thermoelectrics (maximize ZT figure of merit)
4. Steel Fatigue Strength (maximize fatigue strength)

» Five candidate selection strategies:

1. Maximum Expected Improvement

Maximum Likelihood of Improvement

Maximum Uncertainty

COMBO Bayesian Optimization (Ueno et al. 2016)
Random guessing

* Inputs: 20-60 features based on composition and processing
« Goal: Find optimal candidate after fewest number of “measurements”

a kW




Colored by MLI test order

Component 2

Visualizing the Optimization Path
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Benchmark Results
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Integrating Known Physics in ML

Collaboration with Computherm to demonstrate benefits of
CALPHAD data in training ML to predict Al alloy mech properties

ML without CALPHAD ML with CALPHAD
RMSE = 82 MPa RMSE = 61 MPa
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Crystal structure

Formula featurizer

Experimental

Inverse Arrhenius

measurement (data)

elemental properties

Experimental inputs

Lolo
AZ

Deml, Stevanovic, et al., EES (2014)

\.

Log[Conductivity]

Log[Conductivity 0] Activation energy

Machine learning glue

Forward Arrhenius
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Using even small —_
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calculations from

Materials Projectas a ;|
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graph reduces errorin ... . |
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Experimental Band Gap
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Barriers to Materials Discovery Nirvana

Democratized (free, easy-to-use) infrastructure, data, ML

Education for physical scientists in machine learning
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Physical Interpretability vs. Accuracy

Complexity Tradeoff, Strehlow and Cook
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UW-Madison MSE ( F" )
@UWMadisonMSE oliow '

We are excited to announce that department
undergrad Vaness Meschke has won the

@Citrine_io NextGen Fellowship!
skunkworks.engr.wisc.edu/vaness-meschke

9:54 AM - 13 Jun 2017

4 Retweets 4 Likes 9 Av “ ﬂ v @

Q 1 4 QO 4 ™M




Citrine Informatics

2017 Summer School on Computational Materials Science Across Scales, Texas A&M
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Summary

Machine learning has significantly accelerated materials
discovery across a variety of application areas

In our experience, lack of tools and education prevent such
acceleration from becoming ubiquitous

We strive to give materials scientists both the platform and
knowledge to accelerate their work with machine learning
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