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Analyzing Large-Scale Data to
Solve Applied Problems in Materials R&D
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“Centaur” Materials Science

Human and Machine > Human or Machine



Citrine Informatics

Things Scientists Do With Data: 
Conventional View of Informatics

Collect Process Visualize Search Optimize Interpret & 
Learn

Curate & 
EvaluateModel

Machine Learning 
Predicts Properties
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Things Scientists Do With Data:
Citrine’s Vision

Collect Process Visualize Search Optimize Interpret & 
Learn

Curate & 
EvaluateModel

Machine Learning Will Be a Behind-the-Scenes Copilot for All of These

Covered in today’s talk
Citrine also working in these areas—ask me
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Citrine Has a Unique Business Model

• Open Citrination’s data & infra available to everyone
• Open data (one of world’s largest collections of free materials data)
• Open PIF data standard
• Open-source lolo machine learning library
• Open-source API tools and tutorials

• Enterprise Citrination users pay to leverage Open data 
while keeping internal data proprietary
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Industrial Applications & 
Research
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Industrial Case Study #1

Isolated dataset too small 
for machine learning

Much more data available 
on Citrination platform

Scaled-up machine learning 
model drove real-world 
discovery in half the time
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Industrial Case Study #2

Machine learning helped save 
a customer >$30m on 
materials characterization by 
identifying the point of 
diminishing returnsnickjanetakis.com
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Data-Driven Methods Give >10x Yield 
Boost

Scientific community 
discovers ~50 Heuslers/year

Our collaborators made
12 in one paper

Oliynyk et al., Chem. Mater., 2016, 28 (20), pp 7324–7331
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Models Discriminate Similar Structures

Heusler vs other Heusler vs 
inverse

Oliynyk et al., Chem. Mater., 2016, 28 (20), pp 7324–7331
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Deep Learning for Microstructure 
Featurization

SEM Image Deep Learning Featurization PredictionsVector of Textures

The Holm group at CMU is leading the way on open data and methods in machine learning for microstructure; see e.g. 
DeCost et al., UHCSDB: UltraHigh Carbon Steel Micrograph DataBase, IMMI (2017).  



Citrine Informatics

Emerging Methods to 
Accelerate Materials 
Discovery
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Forest with Uncertainty Estimates for 
Learning Sequentially (FUELS)
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Candidate Selection Strategy

Strategies:
• Maximum Likelihood of Improvement (MLI
• Maximum Expected Improvement (MEI)
• Maximum Uncertainty (MU)
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• Four materials problems
1. Magnetocalorics (maximize magnetic deformation)
2. Superconduction (maximize critical temperature)
3. Thermoelectrics (maximize ZT figure of merit)
4. Steel Fatigue Strength (maximize fatigue strength)

• Five candidate selection strategies:
1. Maximum Expected Improvement
2. Maximum Likelihood of Improvement
3. Maximum Uncertainty
4. COMBO Bayesian Optimization (Ueno et al. 2016)
5. Random guessing

• Inputs: 20-60 features based on composition and processing
• Goal: Find optimal candidate after fewest number of “measurements”

Test Cases
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Visualizing the Optimization Path
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Benchmark Results
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Integrating Known Physics in ML
Collaboration with Computherm to demonstrate benefits of 
CALPHAD data in training ML to predict Al alloy mech properties

ML without CALPHAD
RMSE = 82 MPa

ML with CALPHAD
RMSE = 61 MPa
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Experimental 
measurement (data)

Experimental inputs

Machine learning glue

Computational data

Theory and known 
relationships

Deml, Stevanović, et al., EES (2014)
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Using even small 
number (~2k) 
calculations from 
Materials Project as a 
node on the relation 
graph reduces error in 
band gap model
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Barriers to Materials Discovery Nirvana

Democratized (free, easy-to-use) infrastructure, data, ML

Education for physical scientists in machine learning
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Physical Interpretability vs. Accuracy
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2017 Summer School on Computational Materials Science Across Scales, Texas A&M
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Summary

Machine learning has significantly accelerated materials 
discovery across a variety of application areas

In our experience, lack of tools and education prevent such 
acceleration from becoming ubiquitous

We strive to give materials scientists both the platform and 
knowledge to accelerate their work with machine learning
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