Accelerated Search for Materials via Adaptive Learning

Turab Lookman

Los Alamos National Laboratory

Collaborators: P. Balachandran, Z. Liu, J. Gubernatis, J. Theiler (LANL)

R. Yuan, D. Xue (Xian Jiatong)
E. Dougherty, Center for Genomic Signalling (Texas A & M)
I. Karaman

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA



OUTLINE

= Introduction: Approach to Learning

= Examples: NiTi alloys
Pb- free piezoelectrics

= Connections to AM, Challenges
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Does Materials Science have a BIG Data Problem ?

UNCLASSIFIED 2016 Materials for the Future

Operated by Los Alamos National Security, LLC for NNSA



Materials Data Landscape
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MATERIALS CHALLENGE



Learning from Data

= How do we guide experiments towards finding materials with
optimized target properties ?

Current status of Materials Informatics
Generate lots of high throughput data, screen, make predictions

Some studies: Use informatics (dimensionality reduction, inference for
classification, regression ) to make predictions

Focus: feedback — from expts (small data sets but large search spaces)
or calculations

use uncertainties in measurements, surrogate model
predictions

Iteratively refine predictions ------ Adaptive Design
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-State-of-the-art materials informatics
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Codesign for materials design and discovery
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Codesign for materials design and discovery

* iteratively improve predictions
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Optimal Learning for guiding large scale computational tasks OR
experiments



Examples of Adaptive Design for New Materials

Use theory with data
Data-driven ~—— Experiments Experiments

B Ca,Sr,)(Ti Zr,Sn,)O / \
@egy: Ti50 Ni50-X-y-z Cux de Fez ( aloo_x_y X y)(T 100-u—v“="u v) \
Total possibilities: 800,000 (22 known)| . > Known (61)

Target: Minimize Thermal Hysteresis

Unknown

» Largest
electrostrain

Guided 36 experiments
Found 14 with superior properties o )
Validation of design

Beyond the capabilities of the state-of-the-art high-throughput DFT calculations I
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Adaptive Design for Alloy Discovery
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Results from Design Loop on NiTi Alloy

NiTi-based alloy found with smallest dissipation

(1.84K)
TiSONi467cu08Pd02Fez3 (42% improvement)
22 samples 9 loops, 36 predicted and synthesized

3.15K — best in training set
14 better than 3.15K, p value <.001
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Material Performance for Synthesized Alloy

1.84K

Ti5oNiss ,CU, sPdy ,Fe, 5
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Property (arb. units)

Inference not adequate, need to explore
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Experimental Design

Exploitation
(local, utilize model)

fmax
o}

vs. Exploration
(global, improve model)

Property of interest

Strategy 1 (Exploit):

Candidate materials

Next experiment x; optimizes y(x;) by exploitation

Strategy 2 (Explore):

Choose next experiment via uncertainties
-Gaussian Process Model  y= f(x)+N(0,06°)

cov(f(x), f(x)=e" "D +5(x,x)o, predictor
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Examples of Adaptive Design for New Materials
Use theory with data

Data-driven ~—— Experiments
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Search for BaTiO3 based solid solutions with large
electrostrains

100—-x—-y=>60% x <40% y <30%
(Ba100—x—ycaxsry)(Tiloo—u—vzruSnv)OB {

ABO,
B~ ‘

A Unknown

100—u—-v=>60% u<30% v<30%

4Known (61)
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Experimental Comparison of design strategies :

Search for BaTiO3-based large electrostrains

.
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BCT-BZT based piezoelectric with largest electrostrair

Yuan et al., 2017 UNCLASSIFIED 2016 Materials for the Future
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Why Optimal ?: Ease of Domain Switching

Influence of chemistry on domains

O




Examples of Adaptive Design for New Materials

Use theory with data
Data-driven ~—— Experiments Experiments
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Example: Importance of knowledge

-Design criterion: Vertical

-n=0.12 ; m=0.30 -n=0.18 ; m=0.40
-Mix two ends:

-Q: What combination of m,n and chemistries (Al, Li, ...) will optimize

phase boundaries, response?
UNCLASSIFIED 2016 Materials for the Future

Operated by Los Alamos National Security, LLC for NNSA



Learning from theory + data

-x(Ba1—mCam)TiOs—Ba(ZrnTh—n)03
-18%< m < 50%; 15% < n < 30%

(1200 phase diagrams)

Features:

- Order parameters: Polarization, Strain
AV=V, -V, u,u,

T
_ RA + Ro _ AencT _ AenT

t. = reﬁ_nucl - relec_neg -
I RR+R B, B,
B 0 k R

-Training data: 19 phase diagrams

T = f(7¢,8,,85,., Prs Pr)

= Prior distribution subject to constraints

- Take samples from posterior
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Predictions/ synthesis from model + data

(Bay sCay5)TIO 3 - Ba(Ti o741 53)0;

PNAS, 2016

UNCLASSIFIED 2016 Materials for the Future

Operated by Los Alamos National Security, LLC for NNSA




Other materials problems

= Calorics, Magnetic Shape Memory Alloys,
High Entropy Alloys, .......

= Connections to Advanced Manufacturing
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*Chemical space explored: (Ba,Ca,Sr)(Ti,Z1,5n,Hf)O;: Mn, Fe

Pb-free based electrocaloric database

Range Ba (OF] Sr
Minimum 0.6 0 0
Maximum 1 0.21 0.4

Range Ti Zr Sn Hf
Minimum 0.82 0 0 0
Maximum 1 0.18 0.18 0.17
Mn: 0-0.003
Fe: 0-0.015

Number of unique chemical compositions explored in the literature: ~48

Potential chemical compositions: >10,000

Our database contains the following information: | Total number of datapoints in our database: 1923

K/ 7 7 K/ R/
0’0 0.0 0‘0 0’0 0’0

Operated by Los Alamos National Security, LLC for NNSA

Chemical composition
Applied electric field
Measurement temperature
Type of Measurement (Direct or Indirect method)

Measured AT and AS at each electric field and temperature

Number of datapoints with direct method: 200
Number of datapoints with indirect method: 1723

*Potential chemical space from crystal chemistry principles (isovalent constraints):

(Ba,Ca,Sr,Cd,Sn)(Ti,Zr,Sn,Hf)O5: Mn, Fe
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Accelerate optimization of AM processing conditions
(toy problem)

Layer thickness
—

input < Laser scan speed

Laser power
—>

—» Density

— > Porosity —OUtput

—* Strength
—* Shrinkage _

Int J Adv Manuf Technol (2015) 80:555-565

Objective: maximize Open porosity

Open porosity = f(Layer thickness, Laser Power, Feed rate)

Layer thickness = 77
Laser power = 77
Feed rate = 77

: __ Theoretical density - Apparent density
Open pOI‘OSlty (%> - Theoretical density

% Number of AM SLS experiments reported in the
literature: 31 data points

» Problem formulation to demonstrate the efficacy
of machine learning and adaptive design:

» Randomly choose 10 out of 31 data points.

» Can we identify the optimal processing
parameter within 21 additional iterations?




WORKFLOW: Accelerate optimization of AM processing conditions (toy problem)

Feedback

10 data points

Machine learning

Develop a model
to predict Open

porosity as a

function of Layer
thickness, Laser

power & Feed
rate

21 data points

Predict Open
porosity for the
21 potential
processing
conditions

Selective Laser

Sintering

Design

Recommend next Perform experiment

AM experiment
from the potential
list of processing
conditions

Efficacy of the above machine learning and optimal design capability was recently demonstrated

for accelerating new materials discovery.
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Adaptive design

Balachandran et al. Sci. Rep. 6 19660 (2016).
Xue et al. Nat. Commun. 7 11241 (2016).
Lookman et al. Curr. Opin. Sol. St. Mater. (2016).
Xue et al. PNAS 113 13301-13306 (2016)

Xue et al. Acta Mater. 125 532-541 (2017).

Adaptive design requires~ 06 +3 new
AM experiments to find the optimal AM
processing condition!




Rapid Parameter Search for Large Scale Computational Codes




Parameters used in FEM models

!
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Rapid Parameter Search for Large Scale Computational Codes

(elastic problem)

strategy

ML results

250

150 —

100 —

» 124 data points e
200 ;ﬂ;

/1

50—

* ML trained with 250 FEM calculations produces
A results with accuracy comparable to FEM .

E from ML (GPa)

*  We saved ~90% of the computational cost
involved in running FEM.

0 50 100 150 200 250 0 50 100 150 200 250 O 50 100 150 200 250

E from FEM (GPa)



Challenges — Path forward

= Integrate informatics tools with AM with real
time feedback and control to navigate search
space optimally

= Extensions to multifidelity and
multiobjectives

s Use of uncertainties for search

s Data, data, data - under controlled
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Material Databases @ LANL

-Databases integrate computational,
phenomenological, processing and
experimental data.

Ti50Ni50_X_y_ZF€XC11deZ
~800,000

~90

~100 Ni2—an1-x Gal +x
~14,000
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