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OUTLINE 

• Introduction:  Approach to Learning

• Examples: NiTi alloys
Pb- free  piezoelectrics 

• Connections to AM, Challenges
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       Does Materials Science have a BIG Data Problem ? 
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Materials Data Landscape 
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MATERIALS CHALLENGE 



     

         
   

    
 

        
    

     
  

   

     

Learning from Data 

• How do we guide experiments towards finding materials with
optimized target properties ?

Current status of Materials Informatics 
• Generate lots of high throughput data, screen, make predictions

• Some studies: Use informatics (dimensionality reduction, inference for
classification, regression ) to make predictions

• Focus: feedback – from expts (small data sets but large search spaces)
or calculations 

• : use uncertainties in measurements,  surrogate model
predictions 

• : Iteratively refine predictions ------ Adaptive Design
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•State-of-the-art materials informatics
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physics models
Domain knowledge Statistical model 

inference 

Materials 
synthesis and 

characterization 

First principles 
calculations 

Database 

• Classification
Regression
y=f(x)
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Physics models
Domain knowledge
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Success

y(x)=f(x)±e(x)

Codesign for materials design and discovery
• iteratively improve predictions 



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D 2016 Materials for the Future

Physics models
Domain knowledge

1 2

35

Statistical 
inference

experimental
design

Data
Adaptive

Materials
synthesis and

characterization

Computations

4

Success

MATERIALS 
PROJECT, OQMD,
AFLOWLIB, etc. 

Global search in high-dimensional space: ‘Exploit vs Explore’

y(x)=f(x)±e(x)

• Current state of art single
steps  (5 to 2, 2 to 4 or 4 to 5);

No inner feedback loop

Codesign for materials design and discovery
• iteratively improve predictions 



Optimal Learning for guiding large scale computational tasks OR 
experiments
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Data-driven

Validation of design 

Use theory with data

Strategy:  Ti50 Ni50-x-y-z Cux Pdy Fez
Total possibilities: 800,000 (22 known)
Target:  Minimize Thermal Hysteresis

Guided 36 experiments
Found 14 with superior properties

Unknown
(605306)

Known (61)
100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

• Largest
electrostrain

Experiments Experiments

Beyond the capabilities of the state-of-the-art high-throughput DFT calculations

Examples of Adaptive Design for New Materials
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Adaptive Design for Alloy Discovery
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Results from Design Loop on NiTi Alloy

NiTi-based alloy found with smallest dissipation
(42% improvement)

(1.84K) 

22 samples
3.15K – best in training set

9 loops, 36 predicted and synthesized

14 better than 3.15K, p value < .001
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Material Performance for Synthesized Alloy 

1.84K



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D 2016 Materials for the Future

y(x)=f(x)±e(x)!ΔT

Exploitation 
is suboptimal

Need design: Explore 
space using uncertainties

(Exploit)

(Explore/Exploit)N
ew

 m
ea

su
re

m
en

ts
Largest modulus of M2AX phases 
223 data;  features:  rs,rp,rd

Inference not adequate, need to explore
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Strategy 2 (Explore):

Choose next experiment via uncertainties

Strategy 1 (Exploit):

Next experiment xi optimizes y(xi) by exploitation

Exploitation

vs.  Exploration
(global, improve model)

(local, utilize model) fmax σ

predictor

Pr
op

er
ty

 o
f i

nt
er

es
t

Candidate materials

!!y = f (x)+N(0,σ 2)•Gaussian Process Model

!!cov( f (x), f (x '))= e
(−θ|x−x '|2 ) +δ(x ,x ')σ n

Experimental Design
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Data-driven

Validation of design 

Use theory with data

Strategy:Ti50 Ni50-x-y-z Cux Pdy Fez
Total possibilities:800,000 (22 known)
Target:Minimize Thermal Hysteresis

Guided 36 experiments
Found 14 with superior properties

Unknown
(605306)

Known (61)
100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

• Largest
electrostrain

Experiments Experiments

Examples of Adaptive Design for New Materials
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Unknown
(605306)

Known (61)

100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

100 60% 40% 30%x y x y- - ³ £ £

100 60% 30% 30%u v u v- - ³ £ £
ABO3

A
B

Search for BaTiO3 based solid solutions with large 
electrostrains



Experimental Comparison of design strategies : 
Search for BaTiO3-based large electrostrains
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BCT-BZT based piezoelectric with largest electrostrain



Influence of chemistry on domains

Why Optimal ?: Ease of Domain Switching
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Data-driven

Validation of design 

Use theory with data

Strategy:Ti50 Ni50-x-y-z Cux Pdy Fez
Total possibilities:800,000 (22 known)
Target:Minimize Thermal Hysteresis

Guided 36 experiments
Found 14 with superior properties

Unknown
(605306)

Known (61)
100 100 3( )( )x y x y u v u vBa TCa Zr Sni OSr- - - -

• Largest
electrostrain

Experiments Experiments

Examples of Adaptive Design for New Materials
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•n=0.12 ; m=0.30 •n=0.18 ; m=0.40

•Q: What combination of m,n and  chemistries (Al, Li, …) will optimize
phase boundaries, response?

An - Bm

•Mix two ends:

•Design criterion: Vertical
•PZT

m

n

Example: Importance of knowledge 
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•x(Ba1−mCam)TiO3−Ba(ZrnTi1−n)O3

•18%< m < 50%; 15% < n < 30%

•Features:

!
t f =

RA +Ro
RB +Ro

!ΔV =VT −VR !!uT ,uR

!!
reff _nucl =

AencT
BencR

relec _neg =
AenT
BenR

•Training data: 19 phase diagrams

• Order parameters: Polarization, Strain

τ = f (τC ,a2,a6,., pR , pT )
• Prior distribution subject to constraints

• Take samples from posterior

(1200 phase diagrams)

T

R

Learning from theory + data    
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(Ba0.5Ca0.5)TiO 3  - Ba(Ti 0.7Zr 0.3)O3

PNAS, 2016

Predictions/ synthesis from model + data 
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Other materials problems 

• Calorics, Magnetic Shape Memory Alloys,
High Entropy Alloys, …....

• Connections to Advanced Manufacturing
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*Chemical space explored: (Ba,Ca,Sr)(Ti,Zr,Sn,Hf)O3: Mn, Fe

Pb-free based electrocaloric database

Range Ba Ca Sr
Minimum 0.6 0 0
Maximum 1 0.21 0.4

Range Ti Zr Sn Hf
Minimum 0.82 0 0 0
Maximum 1 0.18 0.18 0.17

Mn: 0-0.003 

Number of unique chemical compositions explored in the literature
Fe: 0-0.015

: ~48
Potential chemical compositions: >10,000

Our database contains the following information: Total number of datapoints in our database: 1923
• Chemical composition Number of datapoints with direct method: 200
• Applied electric field Number of datapoints with indirect method: 1723
• Measurement temperature
• Type of Measurement (Direct or Indirect method)
• Measured △T and △S at each electric field and temperature

*Potential chemical space from crystal chemistry principles (isovalent constraints) :
(Ba,Ca,Sr,Cd,Sn)(Ti,Zr,Sn,Hf)O3: Mn, Fe







Accelerate optimization of AM processing conditions 
(toy problem)

•
Layer thickness

AM
Processing • Density

Porosityinput Laser scan eed Method •sp
ive •

output

(Select Strength
Laser power Laser • Shrinkage

Sintering)
Int J Adv Manuf Technol (2015) 80:555–565

Objective: maximize Open porosity

Open porosity = f(Layer thickness, Laser Power, Feed rate)

Layer thickness = ?? •
Laser power = ??

Number of AM SLS experiments reported in the
Feed rate = ?? literature: 31 data points

• Problem formulation to demonstrate the efficacy
of machine learning and adaptive design: 

Open porosity (%) = Theoretical density - Apparent density

Theoretical density

• Randomly choose 10 out of 31 data points.

• Can we identify the optimal processing
parameter within 21 additional iterations?



Develop a model 
to predict Open 
porosity as a 
function of Layer 
thickness, Laser 
power & Feed 
rate

10 data points Machine learning 21 data points

Predict Open 
porosity for the 
21 potential 
processing 
conditions

Design
Recommend next 
AM experiment 
from the potential 
list of processing 
conditions

Feedback

Balachandran et al. Sci. Rep. 6 19660 (2016).
Xue et al. Nat. Commun. 7 11241 (2016).
Lookman et al. Curr. Opin. Sol. St. Mater. (2016).
Xue et al. PNAS 113 13301-13306 (2016)
Xue et al. Acta Mater. 125 532-541 (2017).

Efficacy of the above machine learning and optimal design capability was recently demonstrated 
for accelerating new materials discovery.

Brute force Adaptive design
0

5

10

15

20

25

30

35

N
u
m

b
e
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o
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A

M
 e

xp
e
ri
m

e
n
ts

10 data 
points

Training 
set

Adaptive design requires                   new
AM experiments to find the optimal AM 
processing condition!

⇠6±3

Selective Laser 
Sintering

Perform experiment

WORKFLOW:   Accelerate optimization of AM processing conditions (toy problem)



Rapid Parameter Search for Large Scale Computational Codes
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Dequiedt et al, JMPS 83, 2015
Kubin, Oxford Materials, 2013 
Madec et al, Science 301, 2003 
Devincre et al, Scripta 54, 2006
Devincre et al, Science 320, 2008
Kubin et al, Acta Mat 56, 2008
Hansen et al, IJP 44, 2013

elastic

plastic

Parameters used in FEM models
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ML results

• ML trained with 250 FEM calculations produces
results with accuracy comparable to FEM .

• We saved ~90% of the computational cost
involved in running FEM.

Rapid Parameter Search for Large Scale Computational Codes 
(elastic problem)
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Challenges – Path forward

• Integrate informatics tools with AM with real 
time feedback and control to navigate search 
space optimally

• Extensions to multifidelity and 
multiobjectives

• Use of uncertainties for search

• Data, data, data - under controlled 
conditions!!!!!!!!!!!!!
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•Databases integrate computational,
phenomenological, processing and
experimental data.
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•Material Databases @ LANL
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