Accelerated Search for Materials via Adaptive Learning

Turab Lookman

Los Alamos National Laboratory

Collaborators: P. Balachandran, Z. Liu, J. Gubernatis, J. Theiler

R. Yuan, D. Xue E. Dougherty, *Center for Genomic Signalling*

I. Karaman

Los Alamos Materials

UNCLASSIFIED

(LANL) (Xian Jiatong) (Texas A & M)

OUTLINE

	Introduction:	Approach to Learning
•	Examples:	NiTi alloys Pb- free piezoelectrics
•	Connections	to AM, Challenges

UNCLASSIFIED

2016 Materials for the Future

Does Materials Science have a BIG Data Problem ?

.)16 Materials for the Future

Materials Data Landscape

MATERIALS CHALLENGE

**

Learning from Data

How do we guide experiments towards finding materials with optimized target properties ?

Current status of Materials Informatics

- Generate lots of high throughput data, screen, make predictions
- Some studies: Use informatics (dimensionality reduction, inference for classification, regression) to make predictions
- Focus: feedback from expts (small data sets but large search spaces) or calculations
 - : use uncertainties in measurements, surrogate model

predictions

State-of-the-art materials informatics

Codesign for materials design and discovery

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

Codesign for materials design and discovery

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

aterials

Optimal Learning for guiding large scale computational tasks OR experiments

Examples of Adaptive Design for New Materials

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

Example: Find NiTi alloy with lowest hysteresis

Search space of multicomponent alloy ~800K 22 training samples (.003%) with measured ΔT

 $x \le 20\%, y \le 5\%, z \le 20\%$

Los Alamos

 $50 - x - y - z \ge 30\%$

UNCLASSIFIED

Knowledge:

- Transition temperatures influenced by valence electron concentration
- Hysteresis influenced by atomic size
- Relative stability influenced by changes in electron number

Features:

Valence electron number Radii: metallic, Clementi, Zunger Electronegativity Pettifor Chemical scale

Each $Ti_{50} Ni_{50-x-y-z} Cu_x Pd_y Fe_z$ weighted fraction of features

Operated by Los Alamos National Security, LLC for NNSA

Cycle1

Adaptive Design for Alloy Discovery

ARTICLE

Received 2 Sep 2015 | Accepted 4 Mar 2016 | Published 15 Apr 2016

ar 2016 | Published 15 Apr 2016 DOI: 10.1028/necemits11241 OPEN

Accelerated search for materials with targeted rNNSA properties by adaptive design

Dezhen Xue^{1,2}, Prasanna V. Balachandran¹, John Hogden³, James Theiler⁴, Deqing Xue² & Turab Lookman¹

UNCLASSIFIED

2016 Materials for the Future

Results from Design Loop on NiTi Alloy

NiTi-based alloy found with smallest dissipation

 $Ti_{50}Ni_{46.7}Cu_{0.8}Pd_{0.2}Fe_{2.3}$

(42% improvement)

(**1.84K**)

TABLE I | Five new best alloys, which were found in iterations 6 and 7, amongst 14 with the lowest ΔT . From a total of 9 iterations, which resulted in 36 new alloys, 14 had a ΔT smaller than 3.15 K, the lowest in the original training set of 22. Transformation temperature is given by the endothermic peak in the DSC curve.

Iterations	S Composition	$\Delta T (K)$	Transformation temperature (K)
6	Ti50.0Ni46.8Cu0.9Fe2.0Pd0.3	2.64	289.95
6	Ti50.0Ni44.2Cu1.9Fe3.8Pd0.1	2.53	243.43
6	Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2	1.84	281.77
7	Ti50.0Ni48.1Cu0.2Fe1.5Pd0.2	2.09	301.86
7	$Ti_{50.0}Ni_{46.5}Cu_{1.1}Fe_{2.2}Pd_{0.2}$	2.32	283.79

22 samples 3.15K – best in training set

9 loops, 36 predicted and synthesized

14 better than 3.15K, p value < .001

UNCLASSIFIED

2016 Materials for the Future

Material Performance for Synthesized Alloy

UNCLASSIFIED

2016 Materials for the Future

NASA

Property (arb. units)

Inference not adequate, need to explore

Experimental Design

UNCLASSIFIED

Exploitation

(local, utilize model)

vs. Exploration (global, improve model)

Expected improvement

Expected improvement

Data fit

Strategy 1 (Exploit):

Next experiment x_i optimizes $y(x_i)$ by exploitation

Strategy 2 (Explore):

NATIONAL LABORATORY EST. 1943

•Gaussian Process Model $y = f(x) + N(0,\sigma^2)$

$$cov(f(x), f(x')) =$$

Los Alamos

0.0

0.05 0.04

Operated by Los Alamos National Security, LLC for NNSA

0 Objective v

4.5

2.5

Examples of Adaptive Design for New Materials

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

Aaterials

NNS

Experimental Comparison of design strategies : Search for BaTiO3-based large electrostrains

BCT-BZT based piezoelectric with largest electrostrain

 $\mathsf{F} = \alpha_1 \sum_i P_i^2 + \alpha_{11} \sum_i P_i^4 + \alpha_{12} \sum_{i>j} P_i^2 P_j^2 + \alpha_{111} \sum_i P_i^6 + \alpha_{112} \sum_{i>j} \left(P_i^4 P_j^2 + P_j^4 P_i^2 \right) + \alpha_{123} \prod_i P_i^2$

Switching of polarization domains

Los Alamos

UNCLASSIFIED

2016 Materials for the Future

Why Optimal ?: Ease of Domain Switching

Los Alamos

aterials

Examples of Adaptive Design for New Materials

Operated by Los Alamos National Security, LLC for NNSA

Los Alamos

1 aterials

NNSX

Example: Importance of knowledge

Los Alamos

Accelerated search for BaTiO₃-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning

Dezhen Xue^{1,5}, Prasanna V. Balachandran^a, Ruihao Yuan^b, Tao Hu^c, Xiaoning Qian^c, Edward R. Dougherty^c, and Turab Lookman^{1,1}

^aTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545: ^bState Key Laboratory for Mechanical Behavior of Materials, XI'an Jiaotong University, XI'an 710049, China; and ⁱDepartment of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843

Operated by Los Alamos National Security, LLC for NNSA

EST.1943

Learning from theory + data

-x(Ba1-mCam)TiO₃-Ba(ZrnTi1-n)O₃ -18%< m < 50%; 15% < n < 30%

, (1200 phase diagrams)

Features:

Los Alamos

• Order parameters: Polarization, Strain $\Delta V = V_T - V_R \quad u_T, u_R$

$$t_{f} = \frac{R_{A}^{\mathsf{T}} + R_{o}}{R_{B}^{\mathsf{R}} + R_{o}} \qquad r_{eff_nucl} = \frac{A_{enc_{T}}}{B_{enc_{R}}} \qquad r_{elec_neg} = \frac{A_{en_{T}}}{B_{en_{R}}}$$

Training data: 19 phase diagrams

$$\boldsymbol{\tau} = f(\boldsymbol{\tau}_{\scriptscriptstyle C}, \boldsymbol{a}_{\scriptscriptstyle 2}, \boldsymbol{a}_{\scriptscriptstyle 6}, ., \boldsymbol{p}_{\scriptscriptstyle R}, \boldsymbol{p}_{\scriptscriptstyle T})$$

Prior distribution subject to constraints

Los Alamos

 Calorics, Magnetic Shape Memory Alloys, High Entropy Alloys,

Connections to Advanced Manufacturing

UNCLASSIFIED

2016 Materials for the Future

**Chemical space explored*: (Ba,Ca,Sr)(Ti,Zr,Sn,Hf)O₃: Mn, Fe

Pb-free based electrocaloric database

Range	Ва	Са	Sr	Range	Ti	Zr	Sn	Hf
Minimum	0.6	0	0	Minimum	0.82	0	0	0
Maximum	1	0.21	0.4	Maximum	1	0.18	0.18	0.17

Mn: 0-0.003 Fe: 0-0.015

Number of unique chemical compositions explored in the literature: ~48 Potential chemical compositions: >10,000

Our database contains the following information:

- ✤ Chemical composition
- ✤ Applied electric field
- ✤ Measurement temperature
- Type of Measurement (Direct or Indirect method)
- ✤ Measured $\triangle T$ and $\triangle S$ at each electric field and temperature

**Potential chemical space from crystal chemistry principles (isovalent constraints)*: (Ba,Ca,Sr,*Cd,Sn*)(Ti,Zr,Sn,Hf)O₃: Mn, Fe

Los Alamos

UNCLASSIFIED

2016 Materials for the Future

Operated by Los Alamos National Security, LLC for NNSA

Total number of datapoints in our database: **1923** Number of datapoints with direct method: **200** Number of datapoints with indirect method: **1723**

Cursory look at data

Machine learning objective: Predict $\triangle T = f(Composition, Temperature, Electric field)$

Impact of Design tools on AM

 Guide AM processing conditions towards targeted objectives with fewest experiments. • Rapidly *identify model* parameters (> 1M possibilities) in large scale computational codes to model AM response of microstructures.

Accelerate optimization of AM processing conditions (toy problem)

Objective: maximize Open porosity Open porosity = f(Layer thickness, Laser Power, Feed rate)

Layer thickness = ?? Laser power = ?? Feed rate = ??

Open porosity (%) = $\frac{\text{Theoretical density - Apparent density}}{\text{Theoretical density}}$

- Number of AM SLS experiments reported in the literature: 31 data points
- Problem formulation to demonstrate the efficacy of machine learning and adaptive design:
 - * Randomly choose 10 out of 31 data points.
 - * Can we identify the optimal processing parameter within 21 additional iterations?

WORKFLOW: Accelerate optimization of AM processing conditions (toy problem)

Efficacy of the above machine learning and optimal design capability was recently demonstrated for accelerating new materials discovery.

Balachandran et al. Sci. Rep. **6** 19660 (2016). Xue et al. Nat. Commun. **7** 11241 (2016). Lookman et al. Curr. Opin. Sol. St. Mater. (2016). Xue et al. PNAS **113** 13301-13306 (2016) Xue et al. Acta Mater. **125** 532-541 (2017).

Adaptive design requires $\sim 6 \pm 3$ new AM experiments to find the optimal AM processing condition!

Rapid Parameter Search for Large Scale Computational Codes

Parameters used in FEM models

Rapid Parameter Search for Large Scale Computational Codes (elastic problem)

- ML trained with 250 FEM calculations produces results with accuracy comparable to FEM .
- We saved ~90% of the computational cost involved in running FEM.

- Integrate informatics tools with AM with real time feedback and control to navigate search space optimally
- Extensions to multifidelity and multiobjectives

- Use of uncertainties for search
- Data, data, data under controlled Conditions!!!!!!!!!

UNCLASSIFIED

2016 Materials for the Future

Material Databases @ LANL

