Advanced Manufacturing Office

Energy Efficiency & Renewable Energy

Tech Partnership Overview

June 2017

Jay Wrobel

Tech Partnerships Goals

- Public-Private Partnerships to support voluntary private action
- ✓ Field Validation of Energy Savings Opportunities
- Research and Develop the 'Profession' of Energy
- ✓ Develop Resources for Enhanced Energy Security and Independence

Tech Partnerships 'How to'

- Voluntary engagement with industry
 - We partner with you and recognize the success for energy greatness
- Development of the resources not available commercially
 - We work to build the tools and training needed to manage energy
- Research and Develop the 'Profession' of Energy Nationally
 - We want to make American workers the best in the world
- Develop Resources for Enhanced Energy Security and Independence
 - We want you to understand and manage energy like any other resource

Some AMO Tech Partners (and their Suppliers)

Tech Partnerships Levels of Engagement

• Executive Level

- Develop the enduring 'culture' of energy
- Get recognized for achieving a corporate commitment

Plant/Facilities Manager

- Get resources to determine where and how to save energy
- Technical support for prioritizing energy and getting training

Facility Professional

- Find tools to analyze specific energy systems
- Be part of the energy team to increase own value

Executive Level: Better Buildings, Better Plants

- Through Better Plants:
 - Organizations set long-term goals (25% energy intensity improvement over 10 years)
 - Receive technical assistance, national recognition & networking opportunities
 - Gain DOE recognition for success
- DOE will assign an expert Technical Account Manager to leverage DOE's energy-saving resources
- Manufacturers have two options to engage in Better Plants:
 - 1. Broader-based *Program* level
 - 2. Higher-leadership *Challenge*

energy.gov/betterplants

Energy Efficiency & Renewable Energy

Better Plants' Reach and Impact Continues to Grow

190 partners; 2,600 plants; 11.5% of total U.S. manufacturing energy footprint \$3.1 Billion Cumulative Cost Savings

Partners benefit from...

- National corporate-level recognition
- Plant level recognition of energy performance
- DOE provided In-Plant Trainings
- Peer networking opportunities
- Expert technical support

 Enhanced access to DOE resources and opportunities

For more info go to <u>www.energy.gov/BetterPlants</u>

Executive Level: ISO 50001 – Energy Management Systems

International standard that draws from <u>best practices around the world</u>. Developed with input from 56 countries, many countries now adopting it as a national standard.

Light blue text represents new data-driven sections in ISO 50001 that are not in ISO 9001 & ISO 14001

energy.gov/50001Ready

Energy Efficiency & Renewable Energy

Executive Level: ISO 50001 – Energy Management Systems

Create and instill the 'culture' of energy continuous improvement through ISO 50001 (similar to 9000 and 14000 but energy focus)

- <u>Executive level</u> support for energy improvement
- Understand and Manage where and how energy is used
- <u>Prioritize and convert</u> engineering into financial decisions
- stablish 50001 Ready and ISO 50001 as a <u>cost effective, brand impacting</u> <u>pathway</u> for sustained, verifiable energy efficiency improvement

All Nissan's vehicle assembly plants in the United States are ISO 50001 certified

Energy Efficiency & Renewable Energy

ISO 50001 in the U.S.

Cummins

Google

Companies already adopting ISO 50001 in America

- 3M
- Aflac
- American Axle & Manufacturing
- BAE Systems
- BMW
- Bosch Rexroth
- Bridgestone
- Cargill
- Chrysler
- Coca-Cola
- Cummins
- Curtiss-Wright EMD
- Detroit Diesel
- Google
- HARBEC Inc.

- Hilton Worldwide
- IBM
- Intertape Polymer Group
- Land O'Lakes
- Johnson Controls
- Mack Trucks
- Marriott International, Inc.
- MedImmune
- NewGold
- Nissan North America
- Samsung
- Schneider Electric
- Titan America
- Volkswagen
- Volvo

50001 Ready Recognition

Three Steps to Becoming 50001 Ready

STEP 1

Start Implementation of ISO 50001 principles

Use the 50001 Ready Navigator Online Tool

 The Navigator walks you through the process of implementing an energy management system and prepares you to be 50001 Ready.

STEP 2 Analysis of energy reductions

Adopt Valid Tool to Present Energy Performance

- ✓ DOE offers the EnPI Lite calculator for 50001 Ready.
- ✓ EPA's Portfolio Manager can also be used
- ✓ Other tools can be approved by DOE

STEP 3 File for 50001 Ready recognition

Submit information to DOE for Review

- ✓ Self-attestation of completion of Navigator, executed by team leader and executive
- ✓ Submit energy performance data

DOE recognizes 50001 Ready achievement

Energy.gov/50001Ready

SEP: Certifying Energy Savings of ISO 50001

- Superior Energy Performance is a DOE program to get third-party verification of energy performance improvement
- A voluntary continual energy performance improvement certification program recognizing excellence in organizational energy management practices.
- SEP certification based upon third-party verification of:
 - Energy management system (ISO 50001) and
 - Energy performance improvement (ANSI/MSE 50021)

time

Chergy.gov/isosep ENERGY This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Plant/Facilities Manager: Industrial Assessment Center

- Started in 1976, the IAC program identifies energy saving and productivity improving recommendations for small and medium-sized manufacturers
- The program is based in, and utilities engineering students of, local universities to:
 - Train engineering students to be the next generation of energy engineers
 - Provide hands-on assessment experience to supplement traditional learning
 - Advance specialized energy engineering curriculum at their respective host universities

Energy Efficiency & **Renewable Energy**

IAC Overview

- Clients served
 - Plant normally located within a 150 miles of an IAC
- Directed at small and medium sized manufacturers – primary customers:
 - Have gross annual sales of <= \$100 million
 - Consume energy at a cost between \$100,000 and \$2.5 million/year
 - Employ no more than 500 people
 - Have no technical staff whose primary duty is energy management

IAC Results

- On average, an IAC client saves more than \$47,000 in energy savings, productivity enhancements, and water use and waste reduction per assessment in one year
- Access to great employees
 - IAC students have hands on industrial experience
 - Many are available and looking for internships
 - Post-graduation, make great employees

Plant/Facilities Manager: Combined Heat & Power

- An integrated Distributed Generation (DG) system
- Located at or near a building / facility (on-site, Microgrid, District Energy)
- Provides at least a portion of the electrical load
- Uses thermal energy for:
 - Space Heating / Cooling
 - Process Heating / Cooling
 - Dehumidification
- Benefits:
 - Economic Development (rural/urban)
 - Energy security
 - Grid stability, particularly in constrained areas
 - Job Creation/Retention
 - Industrial Competitiveness
- Market Barriers/Opportunities:
 - Lack of Information
 - Complexity of installation process
 - Perceived Risk
 - Economics spark spread
 - Utility business case

energy.gov/chp

Energy Efficiency & Renewable Energy

CHP Technical Assistance Partners

NORTHEAST

Facility Professional: AMO Energy System Software Tools

- Provide low-cost access to industrial end-users / plant personnel to understand facility energy use and identify opportunities to optimize energy use
- Designed to reach a wide audience
- Consistently valued by end-use partners
- On-going foundation of many AMO Technical Assistance activities
- Working to modernize and improve

www.energy.gov/eere/amo/software-tools

In light of the tool revamp and modernization we are revisiting our corresponding training curriculum

- Tool use tutorials will be developed for each tool (online, video)
- Expand deployment of In-Plant training curriculum (classroom/in-person) and online curriculum
 - System based fundamentals with tool introduction
 - Energy Management Training
- Explore 3rd party development and implementation of professional certifications in key systems
 - Hydraulic Institute is completing a Pump System certification w/ associated curriculum
 - Compressed Air Challenge has Compressed Air System curriculum

erwise restricted information.

J.S. DEPARTMENT OF

This presentation does no

Questions & Discussion

