DFT Modeling of PGM-free Catalyst Activity and Durability

Edward (Ted) F. Holby, Sigma Division, Los Alamos National Laboratory

LA-UR-16-25411

Summary

- Modeling Goals
- Overview of LANL Modeling Capabilities
- Which Structures?
- Activity Approach
 - Computational Hydrogen Electrode
- Durability Approach
 - First-principles Molecular Dynamics
- Vibrational Signatures
 - Linking Structure to Signature

- Paths Forward
 - Replacing Fe
 - Ligand Modification
 - Strain Engineering

Modeling Goals

- Use modeling approaches to:
 - Guide synthesis of improved PGM-free electrocatalysts
 - Aid characterization of synthesized materials by linking atomic scale structure to experimental spectroscopic signatures and observed properties
- Utilize automation to speed throughput of calculations
- Leverage software developed as part of the Materials Genome Initiative (MGI) Generate structure:property library accessible via web portal

LANL Modeling Capabilities

- Combination of computing facilities and theory expertise for materials modeling
- Utilized codes:
 - Vienna ab initio Simulation Package (VASP)
 - Amsterdam Density Function Suite (ADF)
 - Gaussian09
 - Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
- Computing Resources:
 - *LANL IC Wolf Cluster* 9856 Intel Xeon cores, 205 Tflops/s (peak)
 - LANL IC Moonlight Cluster 4928 Intel Xeon cores + 616 GPUs, 488 Tflops/s (peak)
 - LANL IC Pinto Cluster 2464 Intel Xeon cores, 51 Tflops/s (peak)
 - Dedicated 1000 core (extendable) in house cluster

- Which structures to consider?
 - Guided by relative thermodynamic stability determined via Metropolis Monte Carlo search and DFT studies
 - N-coordinates metal
 - N-metal complexes have lower formation energies at edges
 - Edge-N-metal complexes thermodynamics driven to form small clusters
 - Previously proposed structures
 - Bio-mimetic guidance
 - Combinations and permutations of above based on modeling insight
 - Spontaneous ligands

Holby and Taylor, *App. Phys.* Lett., **101**, 0641012, 2012; Holby, Wu, Zelenay, and Taylor, *ECS Trans.* **50**, 1839, 2013; Holby, Wu, Zelenay, and Taylor, *J. Phys. Chem. C*, **118**, 14388, 2014; Holby and Taylor, *Sci. Rep.* **5**, 9286, 2015; Holby and Zelenay, *Nano Energy*, in Press (2016).

ElectroCat Workshop – Argonne National Laboratory, July 26th, 2016 Slide 5

Activity Approach: Calculation of PGM-free ORR Activity via DFT

Nørskov et al., J. Phys. Chem. B, 108, 17886, 2004; Anderson, Phys. Chem. Chem. Phys, 14, 1330, 2012; Studt, Catal. Lett., 143, 58, 2013.

Calculation of **maximum exergonic potential**, U_I , as ORR activity descriptor; computational hydrogen electrode (CHE); DFT of ORR intermediate binding energies

ElectroCat Workshop – Argonne National Laboratory, July 26th, 2016 Slide 6

- 2 FeCoN₅(*OH) defects more thermodynamically stable than Fe₂N₅(*OH) + Co₂N₅(*OH)
- FeCoN₅(*OH) + *OO \rightarrow *OOH is potential determining step

Holby and Taylor, Sci. Rep., 5, 9286, 2015.

Durability Approach: First-Principles Molecular Dynamics

- Need computational descriptor of durability for application of high-throughput modeling
- Complex corrosion or poisoning phenomenon: includes kinetic barriers, defects, adsorbates, etc.
 - How to best simplify? Can simplified model capture complex behavior?

 $E_{KODTE} = 160 \text{ kV}$

- Tested beam damage model (knock on displacement threshold energy, *E_{KODTE}*) for C neighboring defects and adsorbates as initial test of durability descriptor
- Further testing / validation required (ENABLE synthesis / modeling comparisons and Mn/Fe/Co test)
- Plausible durability descriptor hypothesized and initial simulations prove computational accessibility in high-throughput environment

Holby, Fuel Cells, in press.

Durability Approach: First-Principles Molecular Dynamics

- Simulation of e⁻ hitting edge N of an FeN₄ edge structure, displacing edge NH structure
- N atom most susceptible to removal for both FeN_4 edge (124 kV) and bulk (150 kV)

Vibrational Signatures

- Finite-difference method after relaxation with stricter convergence criteria (6N single point DFT calculations required)
- Gives zero point energy (ZPE), vibrational entropy, and vibrational normal modes
- Normal modes with and without probe molecule can be used for comparison to experimental techniques (*e.g.*, Nuclear Resonance Vibrational Spectroscopy, NRVS)

Paths Forward: Replacing Fe

- Do otherstructures spontaneously form an *OH ligand and does it affect ORR activity? Use Me-N₄ edge structure from stability study
- What role does *Me* species (*Me* = Mn, Fe, Co, Ni) play in activity and reaction pathway?

Calculated *via* Vienna *ab initio* Simulation Package (*VASP*) on 5×8 C pair ZZ edge graphene nanoribbons, PBE-GGA with Grimme dispersion correction and 15 Å vacuum with $5 \times 1 \times 1$ K-pt mesh and 400 eV plane-wave energy cutoff

Considered Active-Site Structures

$MnN_4 - ZZ$	$MnN_4(*OH) - ZZ$
$Mn_2N_5 - ZZ$	$Mn_2N_5(*OH) - ZZ$
$FeN_4 - ZZ$	FeN ₄ (*OH) – ZZ
$Fe_2N_5 - ZZ$	$Fe_2N_5(*OH) - ZZ$
$CoN_4 - ZZ$	$CoN_4(*OH) - ZZ$
$Co_2N_5 - ZZ$	$Co_2N_5(*OH) - ZZ$
$NiN_4 - ZZ$	NiN ₄ (*OH) – ZZ

Los Alamos

Theoretical Modeling of Fe-free ORR Potential Energy Surfaces

- Calculation of **ORR pathway** \rightarrow persistent *OH for edge MnN₄ and FeN₄ (but not CoN₄ or NiN₄)
- Activity descriptor, U_l, prediction without *OH modification: U_{l,Co} > U_{l,Fe} > U_{l,Mn} > U_{l,Ni}
- With *OH modification of Mn and Fe: U_{l,Fe} > U_{l,Mn} ≈ U_{l,Co} > U_{l,Ni}

ectroCat

Electrocatalysis Consortium

Fe-free ORR Catalysts—Experiment and Theory

site structures explains shift in activity trend with Me-N-C catalysts

$$U_{l,Fe} > U_{l,Co} \ge U_{l,Mn} > U_{l,Nn}$$

ElectroCat Workshop – Argonne National Laboratory, July 26th, 2016 Slide 13

ORR Activity of (CM+PANI)-Me-C Catalysts: RDE and Fuel Cell

ORR: 0.6 mg/cm²; 0.5 M H₂SO₄; 900 rpm; 25°C; Ag/AgCl (3 M KCl) reference electrode; graphite counter electrode; steady-state potential program: 30 mV steps, 30 s/step

Anode: 0.2 mg_{Pt} cm⁻² Pt/C H₂,1.0 bar H₂ partial pressure;
Cathode: ca. 4.0 mg cm⁻² (CM+PANI)-Me-C, 1.0 bar air partial pressure; Membrane: Nafion[®],211; Cell size: 5 cm²

Los Alamos

Promising activity observed from Mn- and Co-based catalysts as alternative to Fe-free ORR catalysts, but further development in MEA fabrication and catalyst design necessary to approach activity of Fe-based catalysts

Paths Forward: Ligand Modification

- Ligands (spontaneously formed or otherwise) have been shown to be one path forward to improve electrocatalytic activity
- What *persistent* ligand might be added via synthesis to improve material performance?
 OH and NH_x suggested in literature

ctrocatalysis Consortium

Paths Forward: Strain Engineering

 Strain modification of electrocatalyst sites proposed for a variety of other systems, including metal-free ORR catalysts and PGM

"The ORR activity of this structure can be tuned by the curvature around the active site."

Cu Induced Lattice Strain of Pt Core Shell Nanoparticles

"Moderate compressive lattice strain is predicted to enhance the rate of ORR catalysis."

Paths Forward: Strain Engineering

Strain Engineering of MnCoN₅(*OH)

• MnCoN₅(*OH) has the highest Fe-free U_l value calculated so far (U_l = 0.67 V)

- Compressive uniaxial strain of zig-zag nanoribbon leads to less strongly bound *O and *OH
- Variability of activity due to strain suggests possible long-range structural effects on activity 1% compressive uniaxial strain of MnCoN₅(*OH) structure increases calculated U₁ to 0.70 V and 2% compressive uniaxial strain increases calculated U₁ to 0.71 V

Acknowledgements

U.S. Department of Energy for funding of "Advanced Cathode Catalysts" project through Office of Fuel Cell Technologies (EERE)

Los Alamos National Laboratory Institutional Computing Program for computational support.

Backup Slides

Activity of Predicted Stable Structures

Activity of Predicted Stable Structures

ElectroCat Workshop - Argonne National Laboratory, July 26th, 2016 Slide 21

Active Site Structures

• $M-N_3$, $M-N_4$, M_2-N_5 , M_2-N_6 (M = Mn, Fe, Co, Ni) in bulk, zig-zag edge, and arm-chair edge with and without ligands are main focus

Holby and Taylor, *App. Phys.* Lett., **101**, 0641012, 2012; Holby, Wu, Zelenay, and Taylor, *ECS Trans.* **50**, 1839, 2013; Holby, Wu, Zelenay, and Taylor, *J. Phys. Chem. C*, **118**, 14388, 2014; Holby and Taylor, *Sci. Rep.* **5**, 9286, 2015; Holby and Zelenay, *Nano Energy*, in Press (2016).

Synthesis of CM+PANI Systems

-]m |___*

Molecular Comparison – "FeN₄C₁₀" vs. "FeN₄C₁₂" Sites

Calculated via Amsterdam Density Functional (ADF) Suite, Dispersion Corrected PBE-GGA, TZP basis set with no frozen core

Stability of (CM+PANI)-Me-C Catalysts after 10,000 Cycles

Electrocatalysis Consortium