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Electrode Microstructure Characterization

Experimental electrode microstructure characterization:
= Porosimetry = Electron microscopy (SEM, TEM, ET) = FIB-SEM = Nano scale X-CT
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Numerical microstructure characterization:

g T R

T T Tl S,
Interface with
membrane

“Transport” Pore

“Transport” Electrolyte
“Dead” Pore

“Dead” Electrolyte

Interface
with GDL

Siddique and Liu Electrochim. Acta (2010)

Mukherjee and Wang J. Electrochem. Soc. 2007 Kim and Pitsch J. Electrochem. Soc. (2009)



\
Hard X-ray Nanoprobe Beamline at APS
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= X-ray energies from 3 to 30 keV

= Sample rotated in X-ray beam, 451 images
for 0.4° rotation

» 60 nm Fresnel zone plate with ~20 nm
resolution used in initial experiments at 32-1D

» Imaging optics with CCD camera sensitive to
absorption contrast and Zernike phase
contrast

= Large field of view and flexible sample
environment for in situ experiments

= Air bearing stage dampens most of the
jittering and helps in aligning projection
images




X-ray Tomography of Annealed Pt/C Catalyst at 32-ID

= 451 images over 180° rotation, 20 nm voxel size

X-CT can only provide morphology of secondary pores due to 20 nm resolution

= 1um sample is extracted to use in hybrid approach
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Catalyst and Support Particle Size Distributions

= TEM images taken at UT-Austin to measure the primary C particle size
distribution in the Ketjen 300J powder
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Hybrid Approach: Volume Fractions of Pt, C, N and Pores

= Microstructure of the electrode strongly
depends on the ink composition

I/C — f}C — 08 fPtC= 0297

= VVolume fraction of primary pores (that
are lost in solid X-CT volume) needs to
be determined approximately

= Mercury intrusion porosimetry results
are used to determine f,,,,

volume of pores d, <20 nm
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Hybrid Microstructure Algorithm

= An algorithm is developed to regenerate microstructure from C, Pt and ionomer
a) X-ray Solid Subsample b) Core C Particles c¢) Grow C Network

e) Generate Ionomer

2.5 nm resolution

400 x 400 x 400 cells
g, = 0.45



Hybrid Model Validation

= BET porosimetry is performed for validation along with MIP
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= Pore size distribution is calculated by
employing the chord length method

= Pore sizes smaller than 2.5 nm are
not modeled in hybrid microstructure

= Smallest pore sizes calculated from
BET and MIP data are 1.35 and
3 nm, respectively

= Overall trend obtained by Hybrid
approach agrees well with both
porosimetry techniques



Hybrid Approach: lonomer Structure
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= lonomer size distribution is characterized
by using sphere fitting method

= The size distribution does not directly
correspond to ionomer film coverage

= Larger sizes such as 15-30 nm
correspond to ionomer agglomerates
whereas the film sizes are observed to be
in range of 5-12.5 nm
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Transport Simulations

= Transport related characteristic properties €0t 7.(DVeo,)=0
are investigated by performing simulations '

" g,,and g, are assumed to be constant

= Local diffusivity D; is calculated by
accounting for Knudsen diffusion:
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Oxygen Transport
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Oxygen Transport: Anisotropy

= The anisotropy of the microstructure is  **% P
investigated by performing simulations in :;4'5E‘°5 ‘ o = 045
orthogonal directions L AOEOe T . & =053
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Charge Transport

= Effects of local composition on the

charge transport are investigated

= Shortest path tortuosity is used to
characterize the transport properties
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Conclusions and Future Work

= Detailed microstructure (C, Pt, ionomer, primary pores) of PEFC electrodes
reconstructed by incorporating data from different experimental techniques

= lonomer size distribution is calculated by combining X-CT with other techniques

= Although primary pores generate new pathways, they have minor effect on
calculated effective diffusivity due to Knudsen diffusion regime

= Transport simulations and the shortest path tortuosity calculations illustrate
heterogeneity and anisotropy of the microstructure

Next steps:
= X-CT (with 12.5 nm voxel) of samples doped ,' >
with Cs to resolve ionomer network ,

= Electrochemical reactions will be solved and
compared with experimental data

= Water transport will be studied by performing
X-CT on water logged samples
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= Application of methodology
to PGM-free electrodes
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