Heat Pump Clothes Dryer

2017 Building Technologies Office Peer Review

Project Summary

Timeline:

Start date: Oct 1, 2012

Planned end date: Sept 30, 2017

Key Milestones

- Experimental validation to demonstrate utility of model as design tool. Met: Jan 31, 2017
- Document next generation design. Upcoming: Apr 30, 2017

Budget:

Total Project \$ to Date:

• DOE: \$3770k

Total Project \$:

• DOE: \$3770k

Key Partners:

GE Appliances (CRADA)

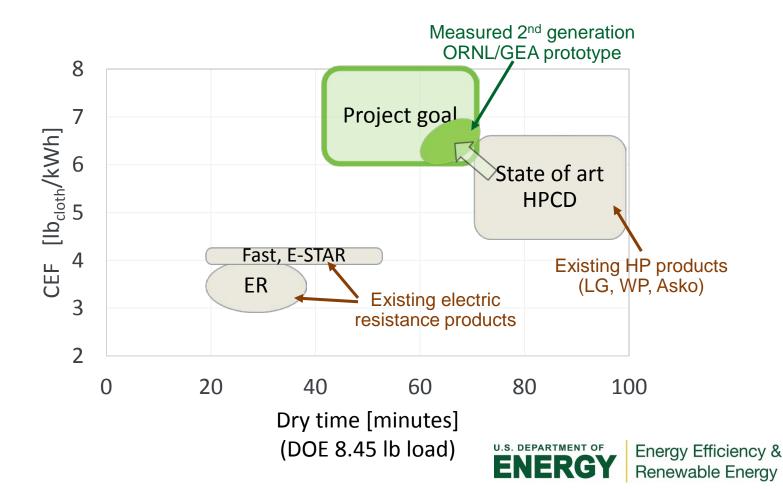
Project Outcome:

Evaluate the technical and commercial viability of a residential heat pump clothes dryer, configured for US market, that enables reduced energy consumption meeting 2020 MYPP target of EF greater than 6.

Purpose and Objectives

Problem Statement: Evaluate the technical and commercial viability of a residential heat pump clothes dryer with energy factor > 6 lb/kWh. Dozens of models are available in Europe, but very few in the US. Research is needed to configure a HPCD to meet U.S. consumer desire for drying large loads with fast dry times and low price premium.

Target Market and Audience: Residential clothes drying. Unit shipments of 8M units/year, at \$300-1500 retail price (weighted towards \$600-1000 range). Market size (2017) *622 TBtu/yr*.


Impact of Project: Introducing a high energy factor HPCD with high energy factor, fast dry time, and modest price premium is needed to finally create a substantial market for heat pump dryers in the U.S.

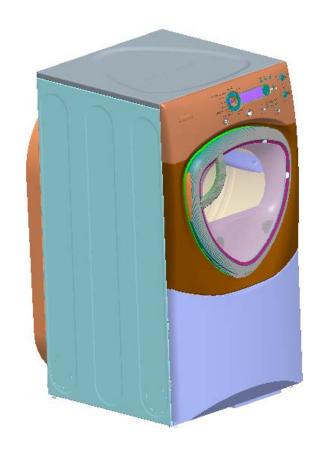
Objective

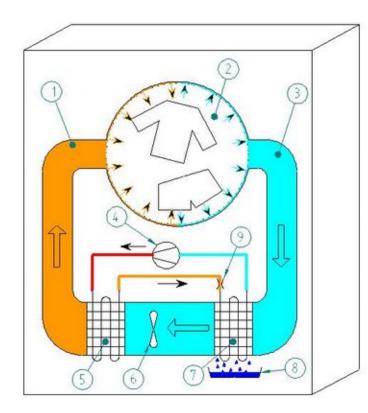
Advance drying state-of-the-art at unprecedentedly low cost

Combined energy factor:
$$CEF = \frac{cloth \ mass \ dried}{electricity \ consumed}$$

Approach

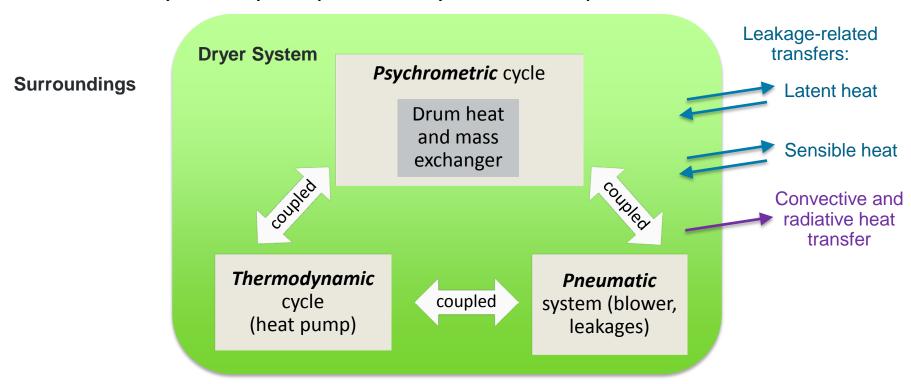
Tactic: New, more rigorous approach to modeling and validation to minimize component sizes and costs while maintaining favorable dry time and efficiency.


Key Issues: Dry time, price premium, and efficiency. A successful product in the US market would need to address all three of these issues:


- Efficiency needed to differentiate product in the market
- Dry time needs to be acceptable to consumers
- Price premium needs to be typical for premium laundry products

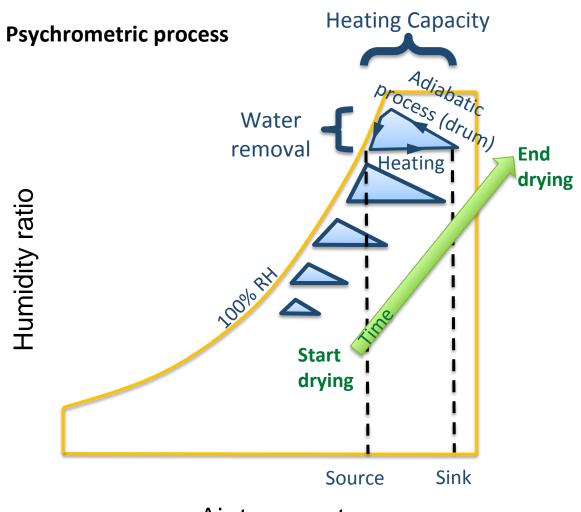
Distinctive Characteristics: Faster dry time, lower projected cost, and higher CEF compared with existing HPCDs on the US market.

Heat Pump Clothes Dryer Cycle


- 1. Hot dry air
- 2. Drum
- 3. Cold wet air
- 4. Compressor
- 5. Condensor or gas cooler
- 6. Circulation fan
- 7. Evaporator
- 8. Condensate
- 9. Expansion valve

- "Closed" cycle ductless, no hole through wall
- Recover condenser waste heat to evaporate water in clothes
- Use evaporator to condense and remove moisture

HPCD Modeling: a Highly Coupled System


- Despite apparent simplicity in a process diagram, HPCD is a complex and highly-coupled system.
- It is only loosely coupled to any fixed state points.

Approach: fresh modeling framework and validation by prototyping

HPCD Modeling: a Transient Drying Process

Notes:

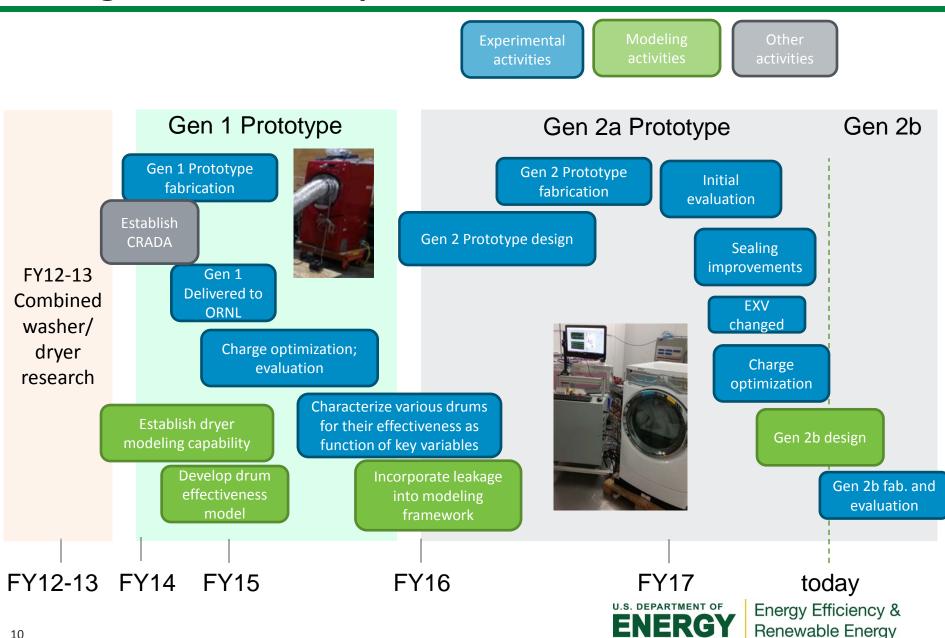
- Dry time and compressor discharge temperature important design targets.
- Clothing moisture content mass ratio (lb_{water}/lb_{cloth}) starts at 57.5%, ends at 4%.

Progress and Accomplishments

Accomplishments:

- Accurate hardware-based design model developed in ORNL's HPDM platform
 - New drum effectiveness approach advances the science of dryer analysis
- 2 generations of prototypes fabricated and evaluated
- Cost reductions achieved via model-guided design process

Market Impact:


- Over 50% reduction in incremental manufacturing cost achieved
- Assessment of commercialization potential under consideration

Awards/Recognition: None

Lessons Learned: Key parts of modeling effort can be simplified; other key parts cannot. Some simplified models are being disseminated in publications.

Progress and Accomplishments: Timeline

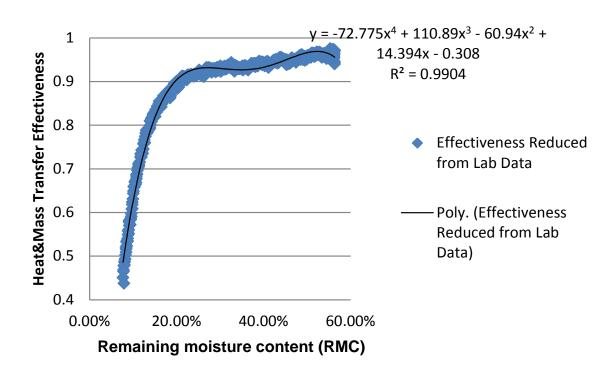
Accomplishments: Validated Design Model

 Model predictions accurate compared with 12-test experimental test matrix:

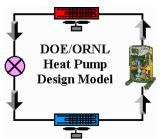
Test #	Deviation: CEF [-]	Deviation: dry time [min]	Deviation: compressor discharge [°F]
1	-4.0%	-0.1	7.8
2	-2.5%	-0.7	2.7
3	-3.9%	1.1	19.4
4	-5.2%	2.1	17.7
5	9.2%	-4.5	1.5
6	10.0%	-5.3	0.4
7	6.9%	-1.6	13.6
8	2.5%	-1.8	21.3
9	1.1%	-1.1	7.2
10	3.6%	-4.5	5.9
11	-0.9%	-0.4	20.5
12	0.3%	0.7	15.3
Average	1.4%	-1.3	11.1
Stdev	4.9%	2.2	7.4
Max dev	10.0%	5.3	21.3

Progress and Accomplishments

System incremental manufacturing cost lowered by more than 2x, compared with conventional heat pump dryers.


Enabled by:

- Rigorous modeling and validation framework
- Consideration of system-level effects of component selections
- New method of drum heat and mass transfer effectiveness modeling
- Pursuing cost-effective design changes suggested by model

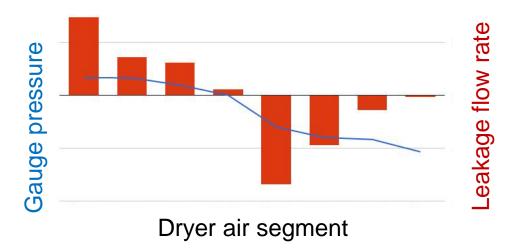

Empirical Drum Heat & Mass Transfer Effectiveness

- Definition newly applied to dryer application
- Effectiveness has strong dependence on RMC
- Advanced the science of clothes dryer analysis: first publication of empirical drum effectiveness-based HPCD modeling and design

Mathematical Model:

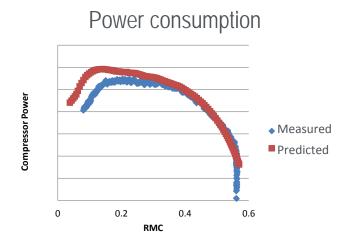
$$\omega_{out,i} = \omega_{s,i} - (\omega_{s,i} - \omega_{in,i}) \times (1.0 - E_M)$$
 $T_{out,i} = T_{s,i} - (T_{s,i} - T_{in,i}) \times (1.0 - E_H)$
 $Q_i = m_{air,circ} \times (H_{out,i} - H_{in,i})$
 $WaterFlow_i = m_{air,circ} \times (\omega_{out,i} - \omega_{in,i})$

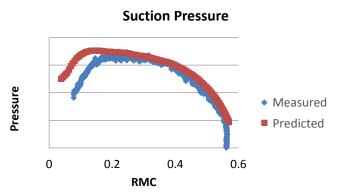
Model VCS in the transient process



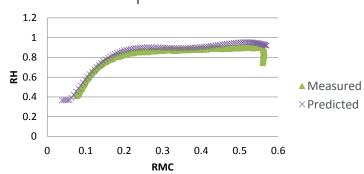
Developed New Leakage Characterization Technique

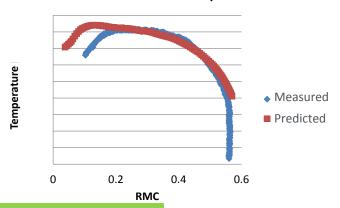
- Seal everything not to be measured
- Pressurize drum with calibrated blower to determine flow coefficient (Cv) of segment under test. Repeat for all segments.
- Measure pressures in situ during normal operation
- Combine Cv and ΔP measurements to calculate leakage flows


Volume flow = $Cv\sqrt{\Delta P}$



ENERGY Energy Efficiency & Renewable Energy


Model Accurately Predicts Performance; State Points



Condenser out Temperature

- Predicted energy factor within 10%
- Predicted drying cycle time within 5 minutes
- Predicted max discharge temperature within 20°F

Project Integration and Collaboration

Project Integration: Commercialization prospects under consideration by industry partner

Partners, Subcontractors, and Collaborators:

Undergraduate interns: Dakota Goodman, University of Louisville; Amar Mohabir, University of Florida

Communications:

- Shen, B., Gluesenkamp, K., Bansal, P., Beers, D. (2016). "Heat pump clothes dryer model development". 16th Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IN, 7/2016.
- Gluesenkamp, K.R., Goodman, D., Shen, B., Patel, V. "An Efficient Correlation for Heat and Mass Transfer Effectiveness in Tumble-type Clothes Dryer Drums" (manuscript in preparation)
- Pradeep Bansal, Amar Mohabir, William Miller (2016). "A novel method to determine air leakage in heat pump clothes dryers". Energy 96:1-7.

Next Steps and Future Plans

- Finalize Gen 2b design refinements final generation of prototype incorporating lessons learned
- Finalize experimental evaluation
- Commercialization determination

REFERENCE SLIDES

Project Budget

Project Budget: 3770k

Variances: None

Cost to Date: 3613k

Additional Funding: None

Budget History								
FY 2012 — FY 2016 (past)			2017 rent)	FY 2018 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
3392k	*	378k	*	0	0			

^{*} In-kind contribution from CRADA partner – exact total is confidential information

Project Plan and Schedule

Project Schedule												
Project Start: Oct 1, 2012		Completed Work										
Projected End: Sept 30, 2017		Active Task (in progress work)										
	Milestone/Deliverable (Originally Planned)											
	•	Milestone/Deliverable (Actual)										
		Go/No-Go Milestone										
	FY20				FY2016			FY2017				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work			<u>'</u>		<u>'</u>			<u>'</u>	•	<u>'</u>		
Develop air leakage model												
Fabricated 2nd generation prototype							•					
CEF evaluation												
GO/NO-GO: Design goals met												
GO/NO-GO: Model validated												
Current/Future Work												
Next generation design												
Evaluate CEF												

