# Novel Ground-Level Integrated Diverse Energy Storage (GLIDES) Coupled with Building Air Conditioning

2017 Building Technologies Office Peer Review









Ayyoub M. Momen, momena@ornl.gov Oak Ridge National Laboratory

### **Project Summary**

### Timeline:

Start date: 9/1/2016

Planned end date: 8/31/2017

#### **Key Milestones**

- Milestone 1: Identify target performance level necessary for payback (\$/kWh, storage time, RTE)-12/31/2016
- Milestone 2:Develop a subscale benchtop prototype and meet 80% of RTE and ED identified in the above milestone-9/30/2017

### **Budget**:

#### **Total Project \$ to Date:**

• DOE: \$227K

Cost Share: \$11%

#### **Total Project \$:**

DOE: \$500K

Cost Share: \$63.8 (11.5%)

#### **Key Partners**:

Blue Mountain Energy, Inc.

Georgia Tech (GaTech)

### **Project Outcome**:

The outcome of this project is to demonstrate:

- Value proposition of on-demand dispatchable electricity generation based on GLIDES energy storage.
- The efficiency improvement potential of the air conditioning system (demonstrated through modeling).
- Improvement in GLIDES Round Trip
   Efficiency (RTE) and Energy Density (ED),
   compared to the existing baseline GLIDES
   system, upon integration to the waste heat
   from AC condenser.



### **Purpose and Objectives**

**Problem Statement**: The technology aims to introduce a solution to the following main problems in the buildings: a) waste heat recovery, b) energy storage, and c) peak demand reduction and/or load shifting applications.

#### **Target Market and Audience:**

- Residential and Commercial buildings
- The improvement in air conditioning performance could potentially save up to 1,341 TBtu/year.

#### **Impact of Project:**

The proposed technology could provide energy storage for buildings at 75% roundtrip efficiency, while improving HVAC COP by up to 35%. The project's final products will be a prototype demonstrating the feasibility and the value proposition of the technology.

- a. Near-term outcomes will a be fully evaluated demo prototype
- b. Intermediate outcomes will be to overcome the main challenges identified
- c. Commercialization/pilot plant size demo



### **Approach**



**Key Issues**: GLIDES is a brand new technology which requires improvement and validation to encourage private sector investment.

Distinctive Characteristics: Developing a reliable cost model, performance data, and identifying real world application challenges (i.e. compliance with building codes).

U.S. DEPARTMENT OF \_\_\_\_ Energy Efficiency &

Renewable Energy

### **Technical Approach**

- Renewable energy sources are naturally intermittent.
- Electricity demand charge is on the rise.
- Low-cost, high- Round-Trip Efficiency (RTE) energy storage can address the above challenges.

### Off-grid buildings:

 Store energy from renewable sources for use during production down-times

#### On-grid buildings:

- Reduce peak demand
- Reduce energy bills
- Improve grid reliability

#### Grid support:

- Grid-scale energy storage/peak-load time shifting
- Enable temporal mismatch between generation and use
- Facilitate 'building-to-grid' interaction







### The GLIDES Concept

**Objective:** Develop a unique, low-cost, high RTE storage technology for, a) small scale building applications, and b) large scale modular pump hydro storage.



| Key advantages                                                 |                                         |  |  |  |  |  |
|----------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Simple, low cost (expected to be at lower cost than batteries) | Dispatchable, scalable                  |  |  |  |  |  |
| Accepts heat and/or electricity as inputs                      | Decouples power/energy storage capacity |  |  |  |  |  |
| Round-trip efficiency>70%                                      | Terrain independent                     |  |  |  |  |  |

A.M. Momen, K. J. Gluesenkamp, O. A. Abdelaziz, E. A. Vineyard, A. Abu-Heiba, A. O. Odukomaiya., "Near isothermal combined compressed gas/pumped-hydro electricity storage with waste heat recovery capabilities," US Provisional Patent Application filed 09-01-2016; serial number 15/254,137.



### Initial Experimental Results (system size ~ 3kWh)



| exp sim     |                           |                  |                      |  |  |  |
|-------------|---------------------------|------------------|----------------------|--|--|--|
|             | <i>T<sub>G</sub></i> [°C] | $T_L[^{\circ}C]$ | p <sub>G</sub> [bar] |  |  |  |
| RMSE[<br>%] | 0.1                       | 1.03             | 1.9                  |  |  |  |





### **Transient Model Formulation**

#### Gas (air) energy equation:

$$m_G c_{v,G} \frac{dT_G}{dt} = -h_{G,L} A_{G,L} (T_G - T_L) - U A_G (T_G - T_{amb}) - p_G \frac{dV_G}{dt}$$

#### Liquid (water) energy equation:

$$m_L c_L \frac{dT_L}{dt} = h_{G,L} A_{G,L} (T_G - T_L) - U A_L (T_L - T_{amb}) + \dot{m}_L c_L (T_{amb} - T_L) \label{eq:ml}$$

#### Tank walls energy equations:

$$m_{T,G}c_{T}\frac{dT_{T,G}}{dt} = h_{i,G}A_{i,G}(T_{G} - T_{T,G}) - h_{o}A_{o,G}(T_{T,G} - T_{amb})$$

$$m_{T,L}c_{T}\frac{dT_{T,L}}{dt} = h_{i,L}A_{i,L}(T_{L} - T_{T,L}) - h_{o}A_{o,L}(T_{T,L} - T_{amb})$$

Gas (air) continuity equation:  $\frac{dV_G}{dt} = -\frac{\dot{m}_L}{\rho_L}$ 

Liquid (water) continuity equation:  $\frac{dm_L}{dt} = \dot{m}_L$ 

#### Tank wall overall conductance:

$$UA_G = \frac{1}{\left(\frac{1}{h_{i,G}A_{i,G}}\right) + \left(\frac{t_T}{k_TA_{avs,G}}\right) + \left(\frac{1}{h_oA_{o,G}}\right)}$$

$$UA_L = \frac{1}{\left(\frac{1}{h_{i,L}A_{i,L}}\right) + \left(\frac{t_T}{k_TA_{avs,L}}\right) + \left(\frac{1}{h_oA_{o,L}}\right)}$$

#### Modeling assumptions:

- No spatial temperature gradients
- Constant ambient temperature
- Constant thermophysical properties for tank wall
- Air behaves as a Redlich-Kwong ideal gas
- Negligible heat transfer between Tank1 and Tank2 masses
- Quasisteady processes



### Results\Baseline

| <b>Parameter</b>    | <u>Description</u>                    | <u>Value</u>    |
|---------------------|---------------------------------------|-----------------|
| $V_{gas,ini}$       | Gas initial volume                    | $2 \text{ m}^3$ |
| num <sub>iets</sub> | Number of Pelton turbine jets         | 1               |
| $T_{amb}$           | Ambient temperature                   | 25°C            |
| $p_{min}$           | M: : (: :(: 1)                        |                 |
| $p_{max}$           | Maximum (after charging) air pressure | 132 bar         |
| $\dot{V}_L$         | Liquid pumping flow rate              | 35 L/min        |
| $t_{nause}$         | Pause time b/w charge/discharge       | 12 hours        |
| $T_{G,ini}$         | Initial gas temperature               | 25°C            |
| $T_{L,ini}$         | Initial liquid temperature            | 25°C            |
| $T_{Tini}$          | Initial tank wall temperature         | 25°C            |







- $W_{ind,in}$  area under curve (1-2)
- $W_{ind,out}$  area under curve (3-4)
- $\eta_{ind} = W_{ind,out} / W_{ind,in} = 0.91$
- ED =  $2.5 \, \text{MJ/m}^3$



### Videos\Baseline\Least Efficient Operation\RTE 66%







### **Waste-Heat Integration**

## CHP, Gas-fired systems or Condenser waste heat



|                         | Base Configuration (Configuration 1) | Configuration 2 | Configuration 3                 |                                 |                                 |  |  |  |  |
|-------------------------|--------------------------------------|-----------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|
|                         | (Configuration 1)                    | Configuration 2 | $T_{WH} = 50^{\circ} \text{ C}$ | $T_{WH} = 70^{\circ} \text{ C}$ | $T_{WH} = 90^{\circ} \text{ C}$ |  |  |  |  |
| η <sub>elec</sub> [-]   | 0.66                                 | 0.70            | 0.75                            | 0.78                            | 0.82                            |  |  |  |  |
| η <sub>ind</sub> [-]    | 0.91                                 | 0.96            | 1.03                            | 1.07                            | 1.12                            |  |  |  |  |
| ED [MJ/m <sup>3</sup> ] | 2.46                                 | 3.08            | 3.28                            | 3.43                            | 3.59                            |  |  |  |  |



### Subtask 2.1: Isothermal-Isobaric Storage Using Condensable Gas

- Replace air with condensable gas
- Improve ED
- Constant pressure
  - Larger volume displacement
- Tested on small scale using R134a and oil







### Task 1.3: Outline the Performance Level Necessary for Payback

- $P_G(t) = P_S(t) + P_L(t)$
- Minimize summation of P\_G for the whole year
- At 15 min intervals:
  - 96 steps/hour
  - 96x365 steps/year

#### Electricity rate structure in Los Angeles, CA

| Monthly charge, \$ | 246.33              | Tax     | 8%    |
|--------------------|---------------------|---------|-------|
|                    |                     |         |       |
|                    | Time of use         | \$/kWh  | \$/kW |
| From 1/1 to 5/31   | from 0:00 to 8:00   | 0.01676 | 7.58  |
| and                | from 8:01 to 21:00  | 0.01676 | 7.58  |
| from 10/1 to 12/31 | from 21:01 to 24:00 | 0.01676 | 7.58  |
|                    | from 0:00 to 8:00   | 0.01676 | 7.58  |
| From 6/1 to 9/30   | from 8:01 to 12:00  | 0.01676 | 8.34  |
|                    | from 12:01 to 18:00 | 0.01676 | 16.42 |
|                    | from 18:01 to 23:00 | 0.01676 | 8.34  |
|                    | from 23:01 to 24:00 | 0.01676 | 7.58  |
| All weekends       | from 0:00 to 24:00  | 0.01676 | 7.58  |







### Task 1.3: Outline the Performance Level Necessary for Payback

Maximum economically-viable initial cost at different payback periods for the <u>large office</u>

<u>Department of Energy reference</u>

<u>building</u>.

Annual savings divided by kWh of GLIDES for different system sizes and capacities in Los Angeles, California.

General trend suggests small storage capacity (i.e. 1 hr.) has much better economical feasibility than the larger capacity storage, so all that is needed is to eliminate intermittent spikes in the demand.







### **Progress and Accomplishments**

#### **Accomplishments**:

During the last 4 months, a cost model was developed which helped to identify the metrics needed to be met for the payback in large office buildings.

Preliminary test results collected for alternative design (condensable gas).

### **Market Impact**:

|                                        | Lead acid battery                    | Proposed technology     |
|----------------------------------------|--------------------------------------|-------------------------|
| Energy storage cost \$/kWh             | \$350–600                            | \$180–300               |
|                                        | (replacement needed every 3–5 years) | (no replacement needed) |
| Storage efficiency %                   | 70–85                                | 70–82%                  |
| HVAC COP improvement                   | 0%                                   | ~35%                    |
| 2030 national energy savings[9] due to | 0                                    | 1,341 TBtu              |
| enhanced COP                           |                                      | 1,341 IBtu              |

### Awards/Recognition:

- A. M. Momen, K. J. Gluesenkamp, O. A. Abdelaziz, E. A. Vineyard, A. Abu-Heiba, A. O. Odukomaiya., "Near isothermal combined compressed gas/pumped-hydro electricity storage with waste heat recovery capabilities," US Provisional Patent Application filed 09-01-2016; serial number 15/254,137.
- B. Odukomaiya, Wale O.; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Mehdizadeh Momen, Ayyoub (ORNL) Thermal analysis of near-isothermal compressed gas energy storage system. *Applied Energy*. 179 (October 2016) 948-960.
- C. Wale Odukomaiya, Ayyoub M. Momen, Kyle Gluesenkamp, Omar Abdelaziz, Samuel Graham, Transient thermofluids analysis of a Ground-Level Integrated Diverse Energy Storage (GLIDES) System, IMECE2015-50478.

#### **Lessons Learned:**

Cost analysis shows that more than 70% of the system cost belongs to the cost of the pressure vessels.

U.S. DEPARTMENT OF \_\_\_ Energy Efficiency &

Renewable Energy

### **Project Integration and Collaboration**

### **Project Integration:**

- Weekly meetings between ORNL team members
- Bi-weekly meetings between ORNL, Blue Mountain Energy and GaTech

#### **Partners, Subcontractors, and Collaborators:**

ORNL → ED, RTE improvement, cost model, system design, and prototype testing Blue Mountain Energy → Prototype development and cost model

#### **Communications:**

- Applied Energy Journal
- ASME IMECE
- ASHRAE
- Leadership from congressional staff briefed on the technology



### **Next Steps and Future Plans**

### **Next Steps:**

- Complete cost model
- Alternative design improvement (condensable gas)
- Prototype design
- Prototype development
- Prototype evaluation

#### **Future Plans:**

- Demonstrate the prototype in events
- Find interested parties who are willing to invest and take the technology to the next phase



### REFERENCE SLIDES



### **Project Budget**

**Project Budget**: DOE total \$500k

Cost share \$63.8

Variances: None

Cost to Date: \$227k

Additional Funding: None

| Budget History |              |        |               |                      |            |  |  |  |
|----------------|--------------|--------|---------------|----------------------|------------|--|--|--|
|                | 2016<br>ast) |        | 2017<br>rent) | FY 2018<br>(planned) |            |  |  |  |
| DOE            | Cost-share   | DOE    | Cost-share    | DOE                  | Cost-share |  |  |  |
| 0              | 0            | \$500k | 10%           | 0                    | 0          |  |  |  |



### **Project Plan and Schedule**

| Project Schedule                                                                |              |                                                           |                |              |              |              |              |              |              |              |              |              |
|---------------------------------------------------------------------------------|--------------|-----------------------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: Oct 2016                                                         |              | Com                                                       | Completed Work |              |              |              |              |              |              |              |              |              |
| Projected End: Sept 2017                                                        |              | Active Task (in progress work)                            |                |              |              |              |              |              |              |              |              |              |
|                                                                                 | •            | Milestone/Deliverable (Originally Planned) use for missed |                |              |              |              |              | t            |              |              |              |              |
|                                                                                 | •            | Milestone/Deliverable (Actual) use when met on time       |                |              |              |              |              |              |              |              |              |              |
|                                                                                 |              | FY2                                                       | 2013           |              |              | FY2          | 2014         |              |              | FY2          | 2015         |              |
| Task                                                                            | Q1 (Oct-Dec) | Q2 (Jan-Mar)                                              | Q3 (Apr-Jun)   | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                                                       |              |                                                           |                |              |              |              |              |              |              |              |              |              |
| Q1 Milestone: Identify target level for payback                                 |              | <u> </u>                                                  |                |              |              |              |              |              |              |              |              |              |
| Current/Future Work                                                             |              |                                                           |                |              |              |              |              |              |              |              |              |              |
| Q2 Milestone: Compile building code warranty compliance                         |              |                                                           |                |              |              |              |              |              |              |              |              |              |
| Q3 Milestone: Develop improved system design to meet targes set in task 1       |              |                                                           |                |              |              |              |              |              |              |              |              |              |
| Q4 Milestone: Develop of a subscale prototype and meet 80% RTE and ED in task 1 |              |                                                           |                |              |              |              |              |              |              |              |              |              |

