

WESTART

Race to Zero Student Design Competition Final Presentation Team AtoZ Georgia Institute of Technology

Introductio	on	Architectur	e	Constructabil	lity $ ightarrow$ E		nce / Interi		
Innovatior		Financial Analy	rsis 🤇 E	nergy Analysis	s	ndoor Air Quality and Ventilation	Mecha Pl	nical, Electrical and umbing Design	J
Team At	toZ from	Georgi of Tec	alnstitute hnology						
Lu, Di	Zeng, Zhaoyun	Alhazmi, Mansour	Qiu, Chufei	Zhang, Zeyu	Cai, Ting	Gattani, Anirudh	Zhang, Xi	Chang, Tso-An	
			Facult Br	y Adviso rown, ason	r HI HI	PROGRESS AND S. 1885 . 13		Westart	

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

ATLANTA

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

2016 Nonfarm Employment Growth Rate of the 12 Largest Metropolitan Areas in the US

Georgia Tech

---- Population ---- Employment

Introduction	Architecture	Constructability	A Envelope Performance and Durability	and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

What happens to the life of local residents whose family has been living there for generations?

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

1952

Now

	West End	Atlanta
Average household income	\$23,800	\$79,304
Percentage of Atlanta average	30%	100%

Georgia Tech

Introduction	Architecture	Constructability	Envelope Performance and Durability	
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Atlanta BeltLine

Eastside trail before and after renovation

Introduction	Architecture	Constructability		
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design
WESTA	RT			
	this pr	ogram.		
A piece of	in	End		
			A REAL	
»»»RACE TO ZERO			Georgia	
VE BRANNER OF BRIEV STUDENT DESIGN COM PETITION			Tech	8 Westart

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Unit A Studio for single or young couple. 463 sf

Unit B Studio for single or young couple. 933 sf

Structure

- Concrete for foundation.
- Truss system for floors and Roof.
- Load-bearing Walls.

Floor Truss

- 2"x20" truss for the floor framing.
- 4 inches sprayed polyurethane foam for acoustic and thermal insulation.
- Cavity of the truss can also be used for the distribution of pipes and fresh air ducts

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	

Georgia Tech

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Light Shelf

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Illuminance Map

5001 ----

4000-

2000---

- 6000

• **A**i:

Results of Lighting Analysis

lx: 9/21 3pm

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Variable Refrigerant Flow (VRF) System

1. For a multi-family building, a centralized system has a higher efficiency and lower cost compared to split air conditioners.

2. Since Atlanta has a moderate summer and winter, air source heat pump is the best option for both cooling and heating.

3. Different families in a multi-family building have different schedules, and VRF systems have the best partial load performance.

	Architecture	Constructability		
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Option 1: PV + Heat pump water heater (HPWH)

Efficiency of PV modules	Annual average COP of HPWH			Total system efficiency of HPWH
20%	X	2	=	40%

>>>RACE T

ZERC

Efficiency of solar water heater for Atlanta

50% higher

	Architecture	Constructability		
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design
Annual	electricity consump 212,000 kWh (ac)	otion:	System size: 149 kW	

Option number	Module size	Number of PV Modules	Actual System Size (Wattage)	PV module efficiency	Module Area (m²)	Total PV Module Surface Area (m ²)
1	280W (60-cell) (e.g. SolarWorld or Suniva)	533	149,240	16.7%	1.675	892.78
2	320W (60-cell) (e.g. LG Neon2)	466	149,120	19.5%	1.64	764.24
3	350W (72-cell) (e.g SolarWorld XL)	426	149,100	17.6%	1.993	849.02
4	245W (60-cell) (e.g. SolarWorld or Suniva)	609	149,205	15.1%	1.623	988.56

	Architecture	Constructability	Envelope Performance and Durability	
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Unit Price	Total Price	Total Price with Tax Credits (30%)
\$2.60 per DC Watt	\$387,000	\$271,000

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

Air velocity distribution on z=1.4 section plane

Air velocity distribution on x=1.8 section plane

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

EnergyPlus Air Flow Network Model

Cooling Need with and without Natural Ventilation

Condensation and Mold Issue

				EUI Distribution
VWatts	Calculator 2	211,020	kWh per Year	Heating
Month	Solar Radiation (kWh/m ² /day)	AC Energy (kWh)	Energy Value (\$)	PVWatts Calculator AC Energy Generation (kWh)
January	3.33	12,819	1,282	20,000
February	3.86	13,202	1,320	15,000
March	5.09	18,880	1,888	5,000
April	5.99	21,001	2,100	
Мау	6.39	22,829	2,283	Jarua Februa Mart Po Mr Jul Jul Prett Septembr Octobe Noverto
June	6.71	22,966	2,297	EPC Monthly Energy Consumption and Generation
July	6.31	22,099	2,210	
August	5.98	20,991	2,099	12.00
September	4.66	16,114	1,611	10.00 E 8.00
October	4.34	15,863	1,586	₹ 6.00 4.00
November	3.49	12,585	1,258	2.00
	0.07	44.070	4.467	0.00

Introduction	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	

Westside Atlanta Land Trust (WALT)

Our Discussion with WALT Staffs

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	

Construction Cost Dreakdown	Const	ruction	Cost	Brea	kdown
-----------------------------	-------	---------	------	-------------	-------

26% higher than baseline

	Architecture	Constructability	and Durability	and Appliances
Innovation	Financial Analysis	Energy Analysis <	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

1. We integrate multiple simulations into the design process.

Georgia

Tech

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

2. We interact actively with community the to learn what our target population really need.

We went to the neighborhood to communicate with the local residents.

We attended the Neighborhood Planning Units meeting of West End.

	Architecture	Constructability	Envelope Performance and Durability	Interior Design, Lighting and Appliances
Innovation	Financial Analysis	Energy Analysis	Indoor Air Quality and Ventilation	Mechanical, Electrical and Plumbing Design

4. Our project shows a feasible path to improve the living quality of low-income families.

Unit A 463 sf \$90,000

Unit B 933 sf \$180,000

> Georgia Tech

TIT

>>>RACE TO ZERO

STUDENT DESIGN

o 463 square feet for 1B1B unit accommodating for 2-people family Technical Specifications (Preliminary Value)

o Wall Insulation: R-36.8 O Window Performance: Double pane, Low E o Roof Insulation: R-40.6 o HVAC specifications: Ductless VRF System o Domestic Hot Water: Solar Water Heater with Back-up Electric Heating

Thank you!

Georgia Tech

