

Novel Flash Ironmaking Technology (FIT)

Hong Yong Sohn
Distinguished Professor and TMS Fellow
University of Utah

Clean - Smart - Secure

Flash Ironmaking Technology (FIT) (FIT for H2@Scale)

$$Fe_3O_4 + (H_2, CO)$$

 $\rightarrow Fe + (H_2O, CO_2)$

Gas-Solid Suspension Reduction Hydrogen or Natural Gas

- ✓ Fine iron ore WITHOUT Coke/Pelletization/Sintering
- ✓ Significant Reduction in CO₂ & Energy Consumption
- Replace BF

Direct steelmaking process based on Flash Ironmaking

Flash Ironmaking Technology (FIT) - cont'd

- Process based on proven flash technology, e.g. copper smelting furnaces
- Applicable to iron ore concentrates; magnetite from taconite, hematite-bearing jaspers, etc.
- Reducing/fuel gases include H₂ and CH₄
- Magnetite taconite is the principal iron ore in the U.S.
- In 2008, the gross ore production in the U.S.
 was 54 MM tonnes.
- Minnesota (Mesabi Range) and Michigan (Marquette Range) mines account for almost all U.S. iron ore production.

What Now and Next

Proof of Concept Objectives **Process Validation/ Kinetic Feasibility Project Industrial Pilot** at Lab Scale Scale-up **TBD Technology Road Map Innovative Manufacturing** (2017+)AISI CO₂ Breakthrough (2005-2007)Initiative (2008-2011) (2012-2017)Approaches **Experimental Apparatuses** 1. Large scale 75-100k tpy 2. Modest-scale: dumina Honeycomb 10-25k tpy ligh-Temperature 3. Expand U of Utah work: Similar to bench reactor but Powder Collector & Filter larger Funding Federal, \$350k Federal, \$0 Federal, \$8.0 \$10 - 75M Industry, \$150k Industry, \$ 4.8M Industry, \$ 2.6M **Funding TBD** Total, \$500k Total, \$4.8M Total, \$10.6M

Flash Ironmaking Process

Pilot-scale furnace testing & demonstration

- Current Partners
 AISI / DOE
 ArcelorMittal USA
 Berry Metal Co.
 Timken Steel
 U. S. Steel
 University of Utah
- Reduction with partial oxidation of natural gas, 1,200-1500°C
- Dimensional and residence time relative to commercial plant
- \$10.6 Million cost-share project

FIT produces non-pyrophoric iron

Flash reduced iron at 1623 K (1350 °C)

H₂-reduced iron at 1073 K (800 °C)

Commercial-Scale Plant Modeling

- One-step and Two-step commercial-scale reformerless ironmaking process
- 1 million tons annual output, 300 day/yr operation
- 1,500 °C operation
- Excess driving force = 0.5
- METSIM process model

CO₂ Emissions (tons per ton iron)

Carbon dioxide emission from ore/coke preparation is not included.

% of BF = 2.5 % (H_2); 64 % (Natural Gas w/o Reformer)

Energy Requirement (GJ per metric ton molten iron)

Pelletizing = 3; Sintering = 0.7; Cokemaking = 2 % of BF = 45 % (H_2) ; 70 % (Natural Gas w/o Reformer)

Economic Feasibility – Hydrogen

H. K. Pinegar, M. S. Moats, H. Y. Sohn "Process Simulation and Economic Feasibility Analysis for a Hydrogen-Based Novel Suspension Ironmaking Technology"

Steel Research Int. 82, 2011, No. 8.

- Hot metal price: \$512/ton
- Hydrogen cost: \$2.5/kg-H₂ (2010)
- 500,000 tons/yr hot metal
- 15 year capital project
- 10% discount rate

	NPV (\$ Million)	
CO ₂ emissions credit	1-step process	2-step process
No CO ₂ emissions credit	-\$546	-\$575
\$13/ton of CO ₂	-\$394	-\$423
\$25/ton of CO ₂	-\$249	-\$278
\$50/ton of CO ₂	\$48	\$19
\$75/ton of CO ₂	\$346	\$317
\$100/ton of CO ₂	\$643	\$614

NPV = (minus \$546 million), no CO_2 credit NPV = \$48 million, with \$50/ton CO_2 credit

Financial Feasibility - Natural Gas

Carbon dioxide emission credit	NPV/\$ million			
	Reformerless one-step process	Reformerless two-step process	Ironmaking with built-in SMR process	
No CO ₂ emission credit	\$401	\$232	\$214	
\$13/ton of CO ₂	\$471	\$315	\$277	
\$25/ton of CO ₂	\$533	\$398	\$332	
\$50/ton of CO ₂	\$657	\$557	\$449	
\$75/ton of CO ₂	\$789	\$723	\$567	
\$100/ton of CO ₂	\$920	\$882	\$685	

- Hot metal price: \$512/ton
- 1 million ton hot metal/year
- Natural gas feed: \$5/million Btu
- 15 year capital project
- 10% discount rate

H. K. Pinegar, M. S. Moats, H. Y. Sohn "Flowsheet development, process simulation and economic feasibility analysis for novel suspension ironmaking technology based on natural gas: Part 3 – Economic feasibility analysis" Iron and Steelmaking 2013 vol.40 No.1

NPV = \$401 for Reformerless one-step process NPV = \$214 for SMR Hydrogen Process

Potential Implications

- H_2 Requirement = 0.1 ton / ton iron
- Rate of Iron Production (2015):
 U.S.+ Canada = 32.5 million tons/year
 World = 1.2 billion tons/year
- H₂ Equivalent:

U.S.+ Canada = 3.3 million tons/y =
$$3.7x10^{10}$$
 m³/y
World = 120 million tons/y = $130x10^{10}$ m³/y

■ Reduction in CO₂ Emissions:

```
U.S.+ Canada = 54 million tons/y
World = 2 billion tons/y
```


<u>Summary</u>

- Low CO₂ emissions: 2.5% of BF ironmaking (w/ H₂)
- Energy saving: 3.0 GJ/ton Fe (55%) cf. BF (w/ H₂)
- Eliminate cokemaking and pelletization/sintering & associated pollution.
- 90-99% reduction in 2-7 seconds at 1200-1500°C
- Enormous hydrogen utilization potential