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Nuclear Energy Instrumentation

100 MT/yr EChem Facility
800 MTHM/yr PUREX Plant
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In addition to improving instrument performance though, an advanced
systems approach is needed to fully utilize all available information as
part of an advanced safequards and security system
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B Mission - Develop innovative technologies and analysis tools to enable
next generation nuclear materials management for existing and future U.S.
nuclear fuel cycles, to manage and minimize proliferation and terrorism risk.

® Objectives

* Develop and demonstrate advanced material control and —
accounting technologies that would, if implemented, fill
important gaps Technology

* Develop, demonstrate and apply MPACT analysis tools to Development
assess effectiveness and efficiency and guide R&D and
support advanced integration capabilities —

* Perform technical assessments in support of advanced fuel} Applications
cycle concepts and approaches

* Develop guidelines for safequards and security by design and } Leadership
apply to new facility concepts
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B Establish Safeguards and Security by Design as a standard paradigm for
nuclear energy systems

Enabled by:

B Demonstrate and implement next generation nuclear materials management
technologies and approaches, including advanced integration methods

— Echem, H-Canyon, bilateral engagements, new fuel cycle facilities and demos ...

B Address safeguads and security issues associated with technology
development in other Campaigns

Support NRC rulemaking through engagement and data generation

B International engagement to help influence and support the nuclear energy
enterprise and demonstrate U.S. leadership
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B Safeguards and Security by Design — Echem
— Integrated safeguards and security for electrochemical process
— Systems approach (safeguards and security performance model, fundamental mass
flow models, signature development)
— Technology development (actinide sensor, level/density sensor, microfluidic sampler,
voltammetry)
B Exploratory Research/Field Tests
— Advanced instrumentation development and field tests for next generation nuclear
materials management
— Microcalorimetry, high-dose neutron detector, in situ Pu probe for metal product,
MIP monitor
B Advanced Integration
— Methods to quantitatively integrate disparate data sets and associated field
demonstrations
— Pattern recognition and statistical inference, correlation analysis, modeling and
simulation

Sensor and instrumentation development efforts range from advancing state-of-the-art for
traditional nuclear material accountancy to novel applications such as process monitoring
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@J ENERGY Development of Actinide Sensor for
Nuclear Energy Application in Molten Salt - INL

B Potentiometric sensor in high temperature molten salt for on-line
measurements

Preparation of actinide ion conducting materials is the critical path
B Experimental results with surrogate sensors (Gd) have demonstrated

sensitivity and stability in molten LiCI-KCI-GdCl; salt Y
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The sensor is stable, provides a clean signal and

. : The Gd sensor assembly after
responds to change in GAdCI3 concentration

exposure to LiCI-KCIl based molten
salt at 500 °C for 464.25 hours
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Development of Actinide Sensor
for Application in Molten Salt

Potential (V) vs. Ag/Ag” RE

B Selectivity of gadolinium surrogate sensor was tested in
multicomponent molten salt
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B Uranium sensor development is under way

October 12, 2016

Pieces of ceramic disc
after ion exchange with
LiCI-KCI-UClI,

J. Jue and S. Li, “Actinide
ion sensor for pyroprocess
monitoring,” US Patent
8,741,119 B1, 2014

N.J. Gese, et al.,
“Potentiometric Sensor for
Real-Time Remote
Surveillance of Actinides in
Molten Salts,” Proc. of the
53rd Annual Meeting of
INMM, Orlando, FL, 2012

Weight% Atomic%
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EDS elemental analysis of

U-ion exchanged ceramic
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Level/Density Sensor (Triple Bubbler) - INL

® Bubblers have a long history of
use in aqueous systems

® Project goal is to develop multiple
bubbler system for level and
density measurement, in a molten
salt environment
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Bubbler panel
ready for hot cell
installation
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Top features
of the bubbler
system
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Triple Bubbler Calibration

Calibration Apparatus
5¢cm x 20cm x 18 cm

October 12, 2016

Triple Bubbler Calibration Results

Triple Bubbler

measurements Expected % Difference
Density (kg/m?3)
* DI Water 997.13 =+ 0.29 997.83 -0.1%
e 20% CaCl, 11913 =+ 0.1 1190.5 =+ 0.2 0.1%
*  36% CaCl, 1362.1 + 0.1 1361.9 =+ 0.9 0.0%
Surface Tension (mN/m)
* DI Water 72.3 + 0.6 72.5 + -0.3%
e  20% CaCl, 81.7 + 0.4 81.5 + 0.6 0.2%
*  36% CaCl, 94.5 + 0.1 Unknown
Depth (cm) - EQ (1)
e DI Water 16.01 =+ 0.03 16.04 + 0.03 -0.2%
e 20% CaCl, 16.02 + 0.05 16.00 =+ 0.00 0.1%
*  36% CaCl, 1597 + 0.01 1599 +  0.03 -0.1%

B System has been operated in molten salt system, calibration
in molten salt is under way

G. Galbreth et al., “The Application of a Triple Bubbler System for Accurate Mass and

Volume Determination,” 57" INMM 57th Annual Meeting, Atlanta, GA, 2016
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B Replace manual sampling
with automated sampling ———>

Exact metering

Integration with automated
analysis

B Facilitate the analysis of large
numbers of samples

MDL (Pu Mass Ratio)

‘High throughput micro-sampling”

. . B Generation 1: ® Generation 2: ® Generation 3:
Achieved through droplet generation Microchip Pneumatic Spotter Flow Cell
i i — Better suited for
Analvze each droplet — Too delicate for — Widest range of :
y ) ] p process deployment droplet volumes continuous
e 1000’s of trials with one mL salt _ BefsEsuitsats _ Nottdealfor g;;z:aémce -
Imorove confidence interval process development continuous = " sl
P L ] and analytical operation 3 on-line monitoring
LOWGI’ I|m|t Of deteCtlon applications — Best for intermittent
sampling for off-line
analysis

MDL (Ci, a from Pu)
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Known wt% vs Averaged Peak
Height with Confidence Intervals

Nuclear Energy

1 Droplet 5 Droplets 10 Droplets
% b & / i ;
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i | =, of individual XRF
" rd < measurements, the
5" 5™ averages of large numbers
"5 " e F 4 of measurements
o g converge neatly into a
S Wi% Sr= 0.21 * Sr/Cl + 0.10 2 Wt% Sr = 0.20 * Sr/Cl + 0.11 _ : .
I 0 v Res calibration curve with a
e L tight confidence interval.
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B Voltammetric techniques can be used to
monitor actinide concentrations in 0.02
molten salts

—  Technique does not require use of standards

—  Allows rapid, real-time measurements 0.01 4
— Equipment not dffected by high radiation background <
—  Compatible with remote operations E
—  Well-developed theory for voltammetric response for &  0-001
given redox reaction
— Analyze for multiple components with single indicator
electrode -0.01 - Pu3*/Pu°
—  Multiple voltage perturbation waveforms and inpy > Cpy
methods of analyzing resultant current available D ' 09 ' 0.0 ' 0.9

voltage vs. U**/U° (V)
B Concentration determined from peak
currents / fit to i-v curve
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B Excellent agreement between
numerical and experimental results
for single species at low
concentrations
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—  Peak current closely matched with previousl 3]

wi% (cyclic voltammetry)

reported relative errors in measurements of S 2- 5 -
~1% 14 ]
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H Non-ideal behavior arises at / o 1 3 5 &1 5 & 7 & 9
. o U wt% (from process knowledge)
concentrations > | wt%
_ P e ; Parity plot between known U wt% and ?
Behavior identified during methodology U wi% determined by CV techniques

development (using Berzins-Delahay equation)

—  Reduction in effective diffusion coefficient
makes predictions from CVs low?

B Non-ideal behavior arises with multi-
component salts

U wi% (cyclic voltammetry)

oo

— i-v curve does not conform to Berzins-
parity line

Delahay equation 1 8 w/o iR/cylindriciy freatment

©  with iR/cylindricity treatment
. ° 0 T T T T T T T T
B Predicted concentrations follow the / o 1 2 3 4 5 & 7 8 9
U wi% (from process knowledge)

parity line when iR and cylindricity
. Parity plot comparing predicted uranium concentrations
effeCtS are |nCIUded (with and without iR/cylindricity treatment) versus known

concentrations (from process knowledge)
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B Transition edge sensor (TES) technology coupled to superconducting quantum
interference device preamplifier (SQUID) yields resolution 10x better than best
HPGe detectors currently available

B This translates into potential performance enhancement of greater than 10x

Uncertainty in result due to uncertainty in basic nuclear data Contributions to uncertainty in systematics-dominated limit

HPGe highly sensitive to database or “book values” of gamma-ray energies

- HPGe ™ peal l . Branch Half Center energy
Isotope ratio ti i
e ratios ves HPGE p.CaI
g
: A& 1,0 235pu/23%py 082| 017] 0269 0015015
[ i | ATRRORIY o < g, O 240py/239py 098] o016f 1032 0.024-0.051
g ] L 201py /239py 074 013| 02-1.7| 0.013-0.051
w PG | #1Am/3%Pu 124 | 019 0454 | 0.0410.052
160 I g
140 o ‘ Values in %RSD A striking contrast
512 §raof-
£ gioo}- pCal has factor of 10-to-60
8% 8 %op lower sensitivity to peak
60} 60}~
] - center energy
20 20k 2 D
R a R T ¥ PO oee 0084 0.986 09w 0.9 uCal has a strong immunity

C*'Am/*Pu) Measured/Known *'Amv®°Pu) Measured/Known

Osivge=1—3% O #003%
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PDT sealed-cell concept with corrugated Roron Particle Size-Bistributian via
boron coated cells Aerodynamic Separation Analysis

] Statistics Table [Heslove H 11-16-2015 Boron B1A2
A0

Each cell individually sealed 1 Number Suface Mass
. e Paicle Sze| Paticle Szz |Paticle Sze

No organic materials inside sealed cell 09 Wedmgm) | 1% | 4 | 1

High temperature cleaning treatment b2 Mean(pm) | 230 552 85

: . o Geo. Mean um)| 1% 4% 6%

for high gas purity Mode (ym) | 184 40 112

Each cell tains 15 de wi h | 16 sealed-cells [T 08 Geo. St Dev | 182 198 1%
ach cell contains 15 anode wire channels ;Zgg‘.’?&’ ) T e 5 228 2 e 0o o

boron particles - .

Stability equal to 3He tube system

04 Median:1.9 ym

s r 1 2 3 s T » »
Aocodynamic Dismotor (m)

3-D surface layer

Stability measurements for boron-10 plates
and He-3 tubes

B Detector has been fabricated and new fast P
preampllfler completed (uP to 10MHZ) Cf F4-964 sandwiched between slabs
B System has undergone a series of bench top TR I N
tests — efficiency profile (compared to MCNP), s ——— T
Stability :g Stdev = 5.67 cps tubes Be'la;’t::
B Ready for demonstration in relevant o000 | A I
environment — neutron performance with high ] 28 days
gamma dose | g

Number of Cycles (600s)
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B U-TRU Product is primarily U-Pu with minor actinides (Am and
Np) and rare earths (Nd, Ce, La, Pr)

B U-Pu phase Diagram established by multiple researchers
B Liquidus curve represents the melting point of the alloy on
solidification
B Determine melting point of U-Pu Alloy — Determine Pu
concentration
Alloy cooling curve
1100 Ry “OOL' U-Pu Phase Diagram
1000 £ b ooo} ‘ >
g L
R CRTET PEE | ® 9ool- U/TRU ingot with over 1kg Pu
5 5
2 S s Ay E
el D s °%° // « S. Li, B. Westphal, and S. Herrmann.,
€ / / i “Real-Time Monitoring of Plutonium
0 S S——— ~ = ERe /e Content in Uranium-Plutonium Alloys.”
e == US Patent , 9,121,807 B1, 2015
oo L _ saor- 1 | « B. Westphal and S. Li, “Experimental
0 1 2 3 4 5 6 N 1 1l . - N , . .
Time, h o o0z o4 06 08 10 Investigations in the U-Rich Region of
v Mole fraction U-—> v the U-Pu Phase Diagram,” submitted
< Mole fraction Pu to NuMat 2016
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B Goal: design, install, and calibrate
instrumentation to determine Pu concentration
in U/TRU products (~100 g)
B Experimental
— Establish internal/external thermocouple
configuration at 100g U/TRU scale
— Y,0; crucible (20 cc)
— 8g Al 6061 alloy (~1 wt. % Mg), heat of fusion (750
calories) similar to 100 g U-Pu

750 0

730

710
-0.02
690 | &
— -0.03
3 670 H
N X L
v B
g

Temperature (Celcius)
@
&
s
]
dT/dt (Celcius/second)

20000 20500 21000 21500 22000 22500 23000
Time (seconds)

Al 6061 alloy cooling curve
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Samples/Scores Plot of CMEN & DELTA2¢ca
T T

& Cano
* Am

Cunt
= = =99 Contcence Level

B Gamma-ray based instrument where subtle
changes in spectrum (not peak areas) are
correlated to process/sample conditions with
principal components analysis

B Field test in real operating facility brings
practical knowledge and lessons learned

0 5 15 ?
Scores on PC 1(282.72%) Class Set: 1

Field Test: Tank A (red), Tank B (green)
and mixture of Tank A and B (black) in
PCA space
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B MPACT campaign continues to make progress in advancing technologies and
analysis tools to support advanced safeguards and security systems

B Advanced sensors and instrumentation span a range from advancing the
current state-of-the-art in traditional nuclear material accountancy to novel

applications such as process monitoring

B Facilities in the DOE complex provide unique opportunities for test and
evaluation
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