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Campaign Objectives 

Develop advanced fuel cycle material recovery and waste 

management technologies that improve current fuel cycle 

performance and enable a sustainable fuel cycle, with minimal 

processing, waste generation, and potential for material diversion 

to provide options for future fuel cycle policy decisions 

Campaign strategy is based on developing:  

 Technologies for economical deployment  

– Concept through engineering-scale  

demonstration  

 Capabilities for long-term  

science-based, engineering driven  

R&D, technology development and 

 demonstration  

 People to provide the next generation of  

researchers, instructors, regulators and  

operators  

 

 

 

Material 
Recovery 

Open/Closed 
Fuel Cycles 

Environmental 

National 
Security 
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MRWFD Campaign Structure 
Aimed to Improve Once-Through 

and Enable Recycle  
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• Provide technical leadership in separations and waste forms, leading to effective options for future fuel cycles 
• Manage Campaign research and development to include: prioritization, planning, reporting, and technical reviews 
• Collaborate with university researchers, other campaigns, program offices, and international organizations 

• Provide a framework and data to evaluate technology improvements, performance targets, and identify gaps 
• Develop and demonstrate material recovery technologies that enable processing a broad range of fuels with 

stringent separation requirements (focused on aqueous processing of LWR oxide fuel) 

• Develop and demonstrate technologies that enable TRU separations from LWR fuel 
• Develop cost effective separations processes for MA recycle 

• Develop and demonstrate technologies that enable fuel treatment under current regulatory environment 
• Develop cost effective solutions to off-gas management from fuel treatment and other nuclear applications 

• Develop next generation, high performance, waste forms consistent with advanced separations technologies 
• Demonstrate waste processes cost effective, reliable fabrication of next generation waste forms 

• Enhance disposal options for existing and high-performance waste forms 
• Develop fundamental understanding of waste form behavior in a variety of disposal environments 
• Work with international partners to develop consensus degradation rate law(s) 

• Develop advanced methods and fundamental understanding of separation chemistry and processes 
• Develop predictive models based on fundamental data 

• Develop and demonstrate deployable and sustainable technology to enable recycle of U/TRU for metal fast 
reactor fuel   

• Develop and demonstrate extractants and engineered systems to further improve performance and lower cost 
supply of uranium from seawater 
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Instrumentation and Controls needs 

within MRWFD 

Advanced fuel cycles, if deployed, will likely be implemented in 

2-3 decades 

There is a need for monitoring process operation in near real 

time 

 Currently, only tank volumes, temperatures, pressures, etc. are 

monitored, chemical analysis of the process is obtained, via sampling, 

which has a lag time of several hours from the time the sample is taken 

until the operators know the results of the analysis 

Chemical performance data (i.e. concentrations of key chemical 

species at any given time) would greatly improve operations and 

reduce the need for taking and analyzing samples 

Separation process operation would benefit from the near-real-

time analysis of a number of chemical species 
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On-line Monitoring Demonstration 

within MRWFD Campaign  

The MRWFD campaign has been developing methods to monitor 

key chemical components of a separation process, in near real 

time 

 

On-line Process Monitoring project 

 Development of monitoring equipment to be utilized in future fuel cycle  

 

CoDCon (co-decontamination) project  

 Demonstrate, a separation process producing 70% uranium / 30% 

plutonium mixed oxide, at a scale of ~1 kg Uranium/test 

 Demonstration of Advanced on-line spectroscopic tools 
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Approach:  

On-line Spectroscopic Measurements 

Raman measurements of 

 Actinide oxide ions (U(VI) and Pu(VI)) 

 Organics: solvent components and complexants 

 Inorganic oxo-anions (NO3
-, CO3

2-, OH-, SO4
2-, etc) 

 Water, acid (H+), base (OH-), pH in weak acid/weak base 

 

UV-vis-NIR measurements of 

 trivalent and tetravalent actinide and lanthanide ions 

 

Potential Uses 

 Process control (operator) 

 Process monitoring for safeguards verification (IAEA) 
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Process Monitoring Can Be Achieved 

Throughout the Flowsheet 

Global vision: 

Process monitoring/control 

at various points in 

flowsheet 

 

Every flowsheet contains 

Raman and/or UV-vis-NIR 

active species 

 

 

Monitoring Is Not Flowsheet Specific 

CoDCon 

dissolved fuel 

TRUEX 

TALSPEAK 

rare earths 

U, Pu, Np 

Tc 

FPs 

Am/Cm 

Monitoring of  

strong acid 

or pH desired 

U 
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Np(VI)

Np(V)

relative

Methodology for on-line process monitor 

development: from proof-of-concept to 

final output 
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Model training database  
Chemometric model  

development 
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and translation  

Integrated software for data collection, 

processing, storage and archiving 

Real-time on-line concentration data display 
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Detection limits:  

• 3.1 mM for UO2  

• 0.08 mM for Pu(IV) 

Variable UO2(NO3)2 in 0.8M HNO3 
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Pu(IV) concentration variable 0.1 to 10 mM 

Feed composition: 1.3 M UO2(NO3)2 in 0.8 M HNO3 

UO2(NO3)2 does not interfere with Pu measurements 

Variable Pu(IV) in fuel feed simulant 

Raman spectroscopy  Vis-NIR spectroscopy  
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Pu chemometric model

PLS model for Pu(IV) using UV-vis data
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y = 0.9951x + 0.0018 

R² = 0.9951 

Chemometric PLS models for 

quantitative analysis 

Pu(IV), Np(V) and UO2
2+ (Raman and vis-NIR) 

Use Static spectral database for process monitor model development 

Linear fit with slope = 1 indicates agreement between actual and predicted values, and 

successful model performance  
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Task objectives FY16/17 

Support the roadmap for on-line monitoring and help define the activities 

required for a technology transfer to an operating reprocessing plant 

 

 CEA-DOE collaboration  

 Demonstrate micro-Raman probe for use on U and HNO3 measurements 

 Interface micro-Raman probe for measurement at the microfluidic scale  

 

CoDCon deployment  

 Demonstration of advanced on-line spectroscopic tools within a ~1 kg 

Uranium test 

 

 SBIR Grant:  Spectra Solutions, Inc. / PNNL 

 Phase-1 FY15:  Development of combined Raman/UV-vis probe for use in 

reprocessing environment :  

 Phase-1, FY16:  Microfluidic Spectroscopic Sensor for Nuclear Fuel Reprocessing 

Solutions: 
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From Macroscale to Microscale 

Reduce sampling volume 
–Dose to personnel 

–Dose to equipment 

–Waste volume 
 

 

Microscale Apply this experience to monitoring 
solutions on the microscale level 

Significant experience in 
macroscale process monitoring 
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Microfluidics:  Reduced 

Sampling Volume 

Vial:  

4 cm path length 
Micro flow cell:  

1 cm path length 

Microfluidic device:  

100 µm path length 

Test system response under ideal conditions (long path length, static 

conditions) and compare to response at lower path lengths and flow 

conditions 

Sample 

vial 

Raman 

probe 
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MicroRaman spectra as a function of 

time for varying UO2(NO3)2 and nitric 

acid Solutions in 8 μL cell 

UO2-1 

UO2-2 

UO2-3 

UO2-4 

UO2-5 

UO2-6 

UO2-3 

HNO3-1 

HNO3-2 

HNO3-3 

HNO3-4 HNO3-4 

nitrate band  

at 1050 cm-1  
UO2

2+ band at 

871 cm-1 

Nitric acid range:   0 – 3M 

UO2(NO3)2 range:  0 – 2M 

total nitrate range: 0 – 7M 

water water 
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Model predictions of varying 

UO2(NO3)2 and nitric acid solutions in 

8 μL cell 

HNO3-1 

HNO3-2 

HNO3-3 
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MicroRaman probe 

USAF target 

USAF target 

1st 

generation 

objective 

focal point 

diameter 

~70 μm 

2nd 

generation 

objective 

focal point 

diameter 

~35 μm 

 Fiber optically coupled Raman microscope with 

integrated video imaging 
 

 High sensitivity Raman system with a focal point 

capable of measurements inside a microfluidic chip 
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17 October 2016 
17 

Raman measurements using 

micro-fluidic device with flow 

solutions 

NaNO3 / HNO3 Solution Series 

NaNO3 range:     0 – 4M 

Nitric acid range:   0 – 2M 
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Microfluidic device: Model Predictions 

Total NO3
- 

HNO3
 NaNO3

 

Injection 

Points 

bubbles in cell 
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Overview of CoDCon testing effort 

 Key tasks to be performed 

 Development of co-conversion method 

 Development of electrochemical method to 

produce U(IV) 

 Preparation of simulant containing U and Pu 

 Solvent extraction to produce a combined 

U/Pu nitrate solution 

 Conversion of the U/Pu nitrate solution to a 

solid U/Pu oxide product 

 

 Advanced on-line spectroscopic tools 

will be used to monitor and control the 

testing parameters 

 Raman spectroscopy 

– U(VI) and HNO3 concentrations 

 UV/Vis/NIR Spectrophotometry 

– Pu and Np variable oxidation states and U(IV) 

2-cm centrifugal contactors for 

solvent extraction testing 

Pu(III) 

Pu(IV) 
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CoDCon demonstration concept: 

instrumentation locations 

Co-extraction 

Dissolved 

Fuel 

TBP/ 

dodecane 

Raffinate (FPs and MAs) 

Scrub 

HNO3 

U/Pu Strip 

U(IV) 

U/Pu nitrate 

Bulk U Strip 

Dil. HNO3 

U nitrate 

Conversion 

UO2 / PuO2 

TBP/ 

dodecane 

Spectroscopic measurement: U, Pu, and HNO3 

1 

2 

3 
4 

5 6 

70% U/30% Pu 
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Develop chemometric model for 

quantification of species: 

Approach 

 Collect spectroscopic data of all 

analytes of interest over wide 

range of concentrations/solution 

conditions 

 Model must capture matrix 

effects, interferents, etc. 

 Example: Pu(IV) spectral 

dependence on HNO3 

concentration 

 Use spectroelectrochemistry to 

collect training set data 

 Electrochemically hold wide range of 

Pu and/or U concentrations and 

oxidation states 

 Develop software to provide real 

time analysis/visualization of data 

 

Computer 
for electro-
chemistry

Computer for 
absorption 
spectroscopy

Computer 
for Raman

spectrographs

Glove bag for 
spectroelectro
-chemical 
work
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Conclusions 

 Demonstrated quantitative spectroscopic measurement under fuel 
reprocessing conditions 

 Fuel simulants  

 Actual commercial fuel (BWR Spent Fuel) 

– Raman for on-line monitoring of U(VI), nitrate, and HNO3 concentrations, for both 
aqueous and organic phases  

– Vis/NIR for on-line monitoring of Np(V/VI), Pu(IV/VI), Nd(III)  

 

 Demonstrated micro-Raman probe for use on U and HNO3 measurements 

 Detection limits and predictive modeling of U, HNO3 and nitrate using static solutions 

 Interfaced micro-Raman probe with commercial micro-flow cell 

 Demonstrated monitoring of variable HNO3 and UO2(NO3)2 with micro-volume flow cells  

 

 Current plans for on-line process monitoring 

 Collaborative demonstration on larger lab-scale (CoDCon) 
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