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Objective:

Develop a suite of unique experimental techniques,

augmented by a mesoscale computational framework, to
understand and predict the long-term effects of irradiation,
temperature, and stress on materials microstructures and

their macroscopic behavior.

Scope:

The experimental techniques and computational tools will
be demonstrated on two distinctive types of reactor
materials, namely, Zr alloys (Zircaloy-4) and high-Cr
martensitic steels (HT9). These materials are chosen as the
testbeds because they are the archetypes of high-
performance reactor materials (cladding, wrappers, ducts,
pressure vessel, piping, etc.).
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Deliverables (Since Last Review)

Completion data: 12/19/2015
Deliverable: Provide status of In situ TEM under Heavy lon Irradiation and
Helium Implantation

Completion data: 12/19/2015
Deliverable: Issue status of status on developing chemo-mechanics
framework for microstructure evolution

Completion data: 12/19/2015
Deliverable: Formulating a Mesoscale Model for Simulating Microstructure
Evolution during Aging

Completion data: 12/19/2015
Deliverable: Second Annual Progress Report on Predictive Characterization
of Aging & Degradation of Reactor Materials in Extreme Environments

Completion date: 3/30/2016

Deliverable: Quantitative evaluation of aging vs. microstructure during ion
irradiation

Completion data: 6/19/2016

Deliverable: Understanding the synergistic effects on defect interactions
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Cavity Evolution at Grain Boundaries as a Function of

Radiation Damage and Thermal Conditions in
Nanocrystalline Nickel

(Materials Research Letters, Vol. 4, pp. 96-103, 2015)

Hypothesis: The high GB/volume ratio in nanostructured
materials enhances radiation tolerance because the GBs absorb
irradiation-induced defects.

Model Material: Nanocrystalline Ni film (PLD)

Tools: in situ ion irradiation TEM (I3TEM) facility at SNL, and
coupled chemo-mechanics modeling.
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Samples: Electron transparent nanocrystalline nickel films were
produced by PLD to a thickness of approximately 80 nm on a
NaCl substrate at nominally room temperature. The salt
substrate was then dissolved in a deionized water bath to obtain
freestanding nickel films, which were then floated onto a copper
clamshell transmission electron microscope (TEM) grid. To
establish columnar grain structure, the films were annealed at
550°C for 5 min, resulting in a strong {100} texture.

Irradiation: two sequences
1. Ni3* followed by He*
2. He* followed by Ni3*

Table 1. Self-1on irradiation and helium implantation parameters.

Ni** Rate  Ni** Dose = Damage He™ Rate  He™ Dose  Damage  Total damage
Sequence Ni**/cm?s Ni*t/cm? DPA He™/cm?s He™t/cm? DPA DPA
Ni’*,Het 15x 10" 54 x10% =18 101 2 x 10° ~1.5 ~3.3
Het,Ni** 15x 10" 27 x10%  ~09 1013 8 x 101 ~5.5 ~ 6.4
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(1) Ni3* followed by He* (2) He* followed by Ni3*

3

Observations:
Although both cases have uniform voids everywhere, case (2)
has much higher void concentration on the GBs.
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Post-Irradiation Annealing

Observations:

 H* bubbles attracted
mobile vacancies and
transformed into cavities.

* Cavities grow via
coalescence.

 Some cavities grew as large

S as or larger than the grains
5 themselves.
Wl e e * No preferential cavity
T growth between grain and

Temperature ['C]

These experiments were done in-situ, with a ramp GBs.

rate of about 5C/min. They were not necessarily o GBs did not significantly

held a-t temperature for any specific a_mount of stabilize the cavities on
time, just long enough to capture an image, so

maybe 2 minutes at each imaged temperature. them.
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| Conclusions

 The order of the irradiation and implantation has a significant
impact on the distribution of the resulting cavity structure.

* He* followed by Ni3* results in much higher vacancy
concentration on the GBs.

* The difference is due to the fact that self-irradiation provides
additional sink locations for the helium to cluster uniformly
without having to migrate to the grain boundaries or surfaces.

* Post-irradiation annealing shows that vacancies on the GB are
no more thermally stable than those inside the grain.

e Single component nanocrystalline metals dominated by low-
angle grain boundaries will not provide significant radiation
tolerance compared to large grained systems.

-10-
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Chemo-Mechanics Model
Chemical potential: Mechanical equation:
(0) : (&) _
p,=pn, + RTIn(y c.) =V, MOk a}.::. =0
e Strain decomposition:
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Chemical equilibrium: . : :
Compositional eigenstrain:
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x/b x/b

(a) SIAs (b) Vacancies

Normalized concentrations c_/c, for a 285, 25.06° grain boundary
constructed using disclination dipoles. Spatial axes are
normalized by the Burgers vector b.

12
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Conclusions

A chemo-mechanics model was developed to study radiation-
induced segregation (RIS). In this way, RIS has been modeled
as a two-way interaction between intrinsic stress and point
defects, causing hydrostatic stress to be relieved while point
defects are accumulated and/or depleted.

* The resulting segregation profiles are non-uniform along the
GBs with alternating regions of enrichment and depletion.

* Averaging the segregation along the length of the grain
boundaries reveals W-shaped vacancy segregation profiles,
predicting void-denuded zones near grain boundaries due to
annihilation with large concentrations of SIAs.

-13-
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Depth-Dependent Hardness of lon Irradiated Metals
(J. Nuclear Material, to be submitted)

Purposes: Investigate the depth-dependent hardness of ion
irradiated materials, and develop a predictive model to simulate
the depth-dependent hardness under different irradiation
conditions.

Model Materials: Zircaloy-4 (Zr-4) and
Optimized ZIRLO

Tools: Nanoindentation (iMicro
Nanoindenter from Nanomechanics,

Inc., FEM (Abaqus) and
micromechanics modeling.

- 14 -
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Samples and Irradiation Conditions

Commercially available Zr-4 and Zirlo sheets were cut into
IMmx9mmx0.4mm pieces.

One surface of the sample was polished on a lapping stage,
first with SiC abrasive papers (from FEPA P600 to P4000
grades), then with different silica suspensions from 1 um to
0.05 pum.

Sample were then irradiated at room temp with 24 MeV Zr#*
ions at an average rate of 4.8E10 ions/(cm?s) for 5 hrs and
61 hrs, respectively.

During the irradiation, half of the polished surface of each
sample was masked by an aluminum foils so only the
unmasked half was irradiated.

215
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Hardness of Zr-4 Samples after 61 hours of Irradiation
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Modeling Depth-Dependent Hardness

(a) Indenter (b) Indenter
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Comparison with Literature Data on Stainless Steels
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Predictive Capability of the Model

Hardness (GPa)
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Applications of the Model
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