Predictive Characterization of Aging and Degradation of Reactor Materials in Extreme Environments

Jianmin Qu*

Northwestern University

Remi Dingreville and Khalid Hattar

Sandia National Laboratories**

Supported by NEET through DE-NE0000678

0:00:04/8:27

^{*} Now with Tufts University

^{**} Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Project Objectives and Scopes
- Accomplishments to Date
 - Deliverables and Publications
- Examples of Recent Results
 - Cavity Evolution at Grain Boundaries as a Function of Radiation Damage and Thermal Conditions in Nanocrystalline Nickel
 - Depth-Dependent Hardness of Ion Irradiated Materials

Objective:

Develop a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on materials microstructures and their macroscopic behavior.

Scope:

The experimental techniques and computational tools will be demonstrated on two distinctive types of reactor materials, namely, Zr alloys (Zircaloy-4) and high-Cr martensitic steels (HT9). These materials are chosen as the testbeds because they are the archetypes of highperformance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.).

Deliverables (Since Last Review)

Completion data: 12/19/2015

Deliverable: Provide status of In situ TEM under Heavy Ion Irradiation and

Helium Implantation

Completion data: 12/19/2015

Deliverable: Issue status of status on developing chemo-mechanics

framework for microstructure evolution

Completion data: 12/19/2015

Deliverable: Formulating a Mesoscale Model for Simulating Microstructure

Evolution during Aging

Completion data: 12/19/2015

Deliverable: Second Annual Progress Report on Predictive Characterization

of Aging & Degradation of Reactor Materials in Extreme Environments

Completion date: 3/30/2016

Deliverable: Quantitative evaluation of aging vs. microstructure during ion

irradiation

Completion data: 6/19/2016

Deliverable: Understanding the synergistic effects on defect interactions

Publications

- 1. B. Muntifering, S. J. Blair, C. G., A. Dunn, R. Dingreville, J. Qu, K. Hattar., 2015, Cavity Evolution at Grain Boundaries as a Function of Radiation Damage and Thermal Conditions in Nanocrystalline Nickel. *Materials Research Letters*. Vol. 4, pp. 96-103.
- 2. B. Muntifering, R. Dingreville, K. Hattar and J. Qu, 2015. Electron Beam Effects during In-Situ Annealing of Self-Ion Irradiated Nanocrystalline Nickel. *MRS Proceedings*, 1809, mrss15-2136630 doi:10.1557/opl.2015.499.
- 3. Muntifering, B., Dunn, A., Dingreville, R., Qu, J., and Hattar, K., 2016, "In-Situ TEM He+ Implantation and Thermal Aging of Nanocrystalline Fe," *Microscopy and Microanalysis*, Vol. 21(Suppl. 3), pp 113-114.
- 4. A. Dunn, R. Dingreville, L. Capolungo, 2015, "Multi-scale simulation of radiation damage accumulation and subsequent hardening in neutron-irradiated α-Fe. Modelling and Simulation in Materials Science and Engineering, Vol. 24, pp. 015005.

Cavity Evolution at Grain Boundaries as a Function of Radiation Damage and Thermal Conditions in Nanocrystalline Nickel

(Materials Research Letters, Vol. 4, pp. 96-103, 2015)

Hypothesis: The high GB/volume ratio in nanostructured materials enhances radiation tolerance because the GBs absorb irradiation-induced defects.

Model Material: Nanocrystalline Ni film (PLD)

Tools: in situ ion irradiation TEM (I³TEM) facility at SNL, and coupled chemo-mechanics modeling.

Samples: Electron transparent nanocrystalline nickel films were produced by PLD to a thickness of approximately 80 nm on a NaCl substrate at nominally room temperature. The salt substrate was then dissolved in a deionized water bath to obtain freestanding nickel films, which were then floated onto a copper clamshell transmission electron microscope (TEM) grid. To establish columnar grain structure, the films were annealed at 550°C for 5 min, resulting in a strong {100} texture.

Irradiation: two sequences

- 1. Ni³⁺ followed by He⁺
- 2. He⁺ followed by Ni³⁺

Table 1. Self-ion irradiation and helium implantation parameters.

	Ni ³⁺ Rate	Ni ³⁺ Dose	Damage	He ⁺ Rate	He ⁺ Dose	Damage	Total damage
Sequence	Ni ³⁺ /cm ² s	Ni^{3+}/cm^{2}	DPA	$\mathrm{He^{+}/cm^{2}s}$	$\mathrm{He^{+}/cm^{2}}$	DPA	DPA
Ni ³⁺ , He ⁺ He ⁺ , Ni ³⁺	$\begin{array}{c} 1.5 \times 10^{11} \\ 1.5 \times 10^{11} \end{array}$	$\begin{array}{c} 5.4 \times 10^{14} \\ 2.7 \times 10^{14} \end{array}$	$\begin{array}{l} \approx 1.8 \\ \approx 0.9 \end{array}$	$10^{13} \\ 10^{13}$	$2 \times 10^{16} \\ 8 \times 10^{16}$	≈ 1.5 ≈ 5.5	≈ 3.3 ≈ 6.4

(1) Ni³⁺ followed by He⁺

(2) He⁺ followed by Ni³⁺

Observations:

Although both cases have uniform voids everywhere, case (2) has much higher void concentration on the GBs.

Post-Irradiation Annealing

These experiments were done in-situ, with a ramp rate of about 5C/min. They were not necessarily • held at temperature for any specific amount of time, just long enough to capture an image, so maybe 2 minutes at each imaged temperature.

Observations:

- H⁺ bubbles attracted mobile vacancies and transformed into cavities.
- Cavities grow via coalescence.
- Some cavities grew as large as or larger than the grains themselves.
- No preferential cavity growth between grain and GBs.
- GBs did not significantly stabilize the cavities on them.

Conclusions

- The order of the irradiation and implantation has a significant impact on the distribution of the resulting cavity structure.
- He⁺ followed by Ni³⁺ results in much higher vacancy concentration on the GBs.
- The difference is due to the fact that self-irradiation provides additional sink locations for the helium to cluster uniformly without having to migrate to the grain boundaries or surfaces.
- Post-irradiation annealing shows that vacancies on the GB are no more thermally stable than those inside the grain.
- Single component nanocrystalline metals dominated by lowangle grain boundaries will not provide significant radiation tolerance compared to large grained systems.

Chemo-Mechanics Model

Chemical potential:

$$\mu_{\alpha} = \mu_{\alpha}^{(0)} + RT \ln(\gamma_{\alpha} c_{\alpha}) - V_{m} \eta_{\alpha} \sigma_{kk}$$

Flux:
$$\boldsymbol{J}_{\alpha} = -\frac{D_{\alpha}c_{\alpha}}{RT}\boldsymbol{\nabla}\cdot\boldsymbol{\mu}_{\alpha}$$

Chemical equilibrium:

$$\frac{\partial c_{\alpha}}{\partial t} = -\nabla \cdot \boldsymbol{J}_{\alpha} + \sum_{\beta} a_{\alpha\beta} f_{\beta}$$

Defect-defect interaction rates:

$$f_{defect-defect} = Z_{int}\omega\bigg(n_i^{\frac{1}{3}} + n_j^{\frac{1}{3}}\bigg)\big(D_i + D_j\big)c_ic_j$$

Individual defect dissociation rate: $f_{dissociation} = \omega n^{\frac{1}{2}} D_{\alpha} e^{-\frac{E_b^{(n)}(n)}{k_b T}} N$

Mechanical equation:

$$\sigma_{ji,j}^{(e)} = 0$$

Strain decomposition:

$$\hat{\varepsilon}_{ij} = \varepsilon_{ij}^{(e)} + \varepsilon_{ij}^{(c)}$$

Compositional eigenstrain:

$$\varepsilon_{ij}^{(c)} = \delta_{ij}(\eta_I c_I + \eta_V c_V)$$

Normalized concentrations c_{α}/c_0 for a $\Sigma 85$, 25.06° grain boundary constructed using disclination dipoles. Spatial axes are normalized by the Burgers vector b.

Conclusions

- A chemo-mechanics model was developed to study radiation-induced segregation (RIS). In this way, RIS has been modeled as a two-way interaction between intrinsic stress and point defects, causing hydrostatic stress to be relieved while point defects are accumulated and/or depleted.
- The resulting segregation profiles are non-uniform along the GBs with alternating regions of enrichment and depletion.
- Averaging the segregation along the length of the grain boundaries reveals W-shaped vacancy segregation profiles, predicting void-denuded zones near grain boundaries due to annihilation with large concentrations of SIAs.

Depth-Dependent Hardness of Ion Irradiated Metals

(J. Nuclear Material, to be submitted)

Purposes: Investigate the depth-dependent hardness of ion irradiated materials, and develop a predictive model to simulate the depth-dependent hardness under different irradiation conditions.

Model Materials: Zircaloy-4 (Zr-4) and Optimized ZIRLO

Tools: Nanoindentation (iMicro Nanoindenter from Nanomechanics, Inc., FEM (Abaqus) and micromechanics modeling.

Samples and Irradiation Conditions

- Commercially available Zr-4 and Zirlo sheets were cut into 9mm×9mm×0.4mm pieces.
- One surface of the sample was polished on a lapping stage, first with SiC abrasive papers (from FEPA P600 to P4000 grades), then with different silica suspensions from 1 μm to 0.05 μm.
- Sample were then irradiated at room temp with 24 MeV Zr⁴⁺ ions at an average rate of 4.8E10 ions/(cm²s) for 5 hrs and 61 hrs, respectively.
- During the irradiation, half of the polished surface of each sample was masked by an aluminum foils so only the unmasked half was irradiated.

Hardness of Zr-4 Samples after 61 hours of Irradiation

Modeling Depth-Dependent Hardness

$$H_{\text{irr}} = H_0 \sqrt{1 + \frac{h^*}{Mh} + \frac{A^2 h^* (Mh)^n}{(n+1)(n+3)L_d^{n+1}}}$$
 for $h \le h_c^{\text{sep}}$

$$H_{irr} = H_0 \sqrt{1 + \frac{h^*}{Mh} + \frac{A^2 h^*}{2Mh} \left[\frac{1}{n+1} - \frac{L_d^2}{(n+3)(Mh)^2} \right]} \quad \text{for } h > h_c^{\text{sep}}$$

$$\rho_{\text{def}}(x) = \begin{cases} \left(\frac{x}{L_{\text{d}}}\right)^n \rho_{\text{def}}^0, & x \leq L_{\text{d}} \\ 0, & x > L_{\text{d}} \end{cases}$$

Comparison with Literature Data on Stainless Steels

Predictive Capability of the Model

Applications of the Model

$$H = f(h, n, \rho_{def}, L_d)$$

- Predict the change in material hardness (which is related to yield strength) due to ion irradiation.
- 2. Characterize ion-irradiation induced defect density and distribution.

$$\rho_{\text{def}}(x) = \begin{cases} \left(\frac{x}{L_{\text{d}}}\right)^n \rho_{\text{def}}^0, & x \le L_{\text{d}} \\ 0, & x > L_{\text{d}} \end{cases}$$