Department of Energy (DOE) Advanced Reactor Technologies (ART) R&D Program

Nuclear Graphite Research Needs

Will Windes Idaho National Laboratory

Idaho National Laboratory

www.inl.gov

DOE-NE NEET Cross-cut Coordination Meeting August 15-16, 2016

Why Research Graphite?

Lessons we've learned from other graphite core reactor programs

- After Reactor Start-up...
 - Interestingly fuel is not considered life limiting component after start-up
 - Graphite is life limiting component of reactor
 - Degradation issues of graphite normal and accident operations
 - Changes resulting from irradiation structural integrity, cracks (irradiation creep), fracture
- NRC will require understanding of the primary structural core material
 - Material properties needed for license approval before reactor start-up, and
 - Predicting core behavior during normal and off-normal operation
- Primary objectives of graphite components
 - Must keep the fuel safe
 - Must keep temperature "low" thermal conductivity
 - Must maintain structural integrity strength and irradiation behavior
 - Creep behavior \rightarrow Reduces cracks resulting from irradiation stresses
 - Provides core structure
 - Cooling channel integrity, control rod insertion, and stable fuel configuration

IHUTUR

Primary function of Graphite R&D activities

Defines the safe working envelope for nuclear graphite

- Current and future nuclear graphite components
- Applicable for multiple DOE reactor designs (cross-cutting):
 - HTR (both PB and Prismatic) and MSR designs

Data/analysis will be codified

- Data will be used in new ASME Code
- Code requires use of irradiation data and high temperature behavior

Graphite Core Components

Component	Max. Normal Operation	Off-Normal	DPA
Graphite fuel block	900-1200°C	~1400°C	~ 0.8/yr
Reflector blocks	600-900°C	~1200°C	~ 0.5/yr
Core support columns	1000-1200°C	~1200°C	~0.001/yr
Other components	250 - 350°C	~300-600°C	Varies

Material Issues

Property changes from irradiation and environment

Degradation

Fission product transport/retention

G. Haag," Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation", Juel-4183, 2005

Dose, dpa

Idaho National Laboratory

USA's 5 different research areas

Licensing & Code

- Establishes an ASME approved code (for 1st time)
- Develops property values for initial components and irradiation induced changes

Behavior models

- Predicts irradiated material properties and potential degradation issues
- Irradiation behavior for continued safe operation

Virgin Properties

- (Statistically) Establishes asreceived material properties
- Baseline data used to determine irradiation material properties

Graphite R&D Program

Defines the safe working envelope for nuclear graphite and protection of fuel

Irradiation

- Determines irradiation changes to material properties
- Irradiation behavior for continued safe operation

Mechanisms and Analysis

- Data analysis and interpretation
- Understanding the damage mechanisms is key to interpreting data

AGC Experiments

Irradiation Testing:

- Creep Specimens
- Button "piggyback"
- Changes to properties
- Irradiation of new materials
- Fundamental irradiation damage

AGC Experiment : Irradiation changes

- Three pairs of test capsules
 - 3 Temperatures
 - 3 Stress levels
 - Continuous dose (0.5 7 dpa)
- By comparing between test series
 - Property change by dose
 - Property change by temperature
 - Property change by stress

Areas of pertinent graphite research

DOE-ART focusing on large program activities

- Irradiation (AGC), Unirradiated data, Oxidation, ASME Code

Areas of maximum interest

- Fundamental (i.e., small) irradiation studies
 - Irradiated defect structures creep mechanisms
- Material property changes
 - Affect of irradiation and molten salt
- Fracture and strength
 - Fracture toughness and multi-axial fracture behavior
- Degradation (oxidation salt erosion)
 - Development of oxidation/degradation models
 - Development of new oxidation resistant grades/components (dopants and coatings)
- NDE flaw detection
 - Flaw prediction and evolution during irradiation or degradation

Fundamental irradiation studies

A real need to determine irradiated defect structures and how they affect behavior/performance.

Creep - Dislocation climb/glide

- Intriguing TEM images under electron beam
 - ∥to Basal planes
 - Interaction of basal planes under irradiation
 - Does this show dislocation glide possibilities?
- Not supposed to happen in current model

C. Karthik et al. J. Nuc Mat **412** (2011) 321–326

Dislocation climb/glide

T. Trevethan et al, U of Sussex & U of Leeds, INGSM-13, Sept 2012

3 IL bonds

2 IL bonds

2 IL bonds

3 IL bonds

Evidence of irradiation damage in graphite

A. Asthana et al, J. Appl. Cryst., (2005) 38, 361-367

 γ_{high}

Questions

• What /Which defect structure affects material properties

- What are real creep mechanisms? Defect structures
- What defect structures affect strength/modulus?
 - How does this affect fracture behavior?
- How is thermal diffusivity/conductivity affected?
- Thermal expansion doesn't match up with current explanation of microstructure/defect changes. Why?

How does defect structure behave/interact

- Microstructure evolution
 - How does the defect microstructure change over increased dose and temperature?
 - Defect accumulation
- How is porosity affected?
 - Pore generation in tertiary creep but how/why?
- Irradiated specimens at National Labs (INL/ORNL)
 - Collaborations and sharing of irradiated specimens is a priority
 - Independent (small) studies with university reactors is needed, too

Material Property Changes

1.4

_

Irradiation shown to affect graphite properties

- Dimensional changes, internal stress

dose, dpa

- Increased stiffness and strength
- Dramatic decrease in thermal diff.

Fracture and Strength

- Irradiation shown to affect graphite strength
 - Initial strength due to dislocation pinning from point defects
 - But what about pore structure?
 - Microstructure evolution over dose?
 - Increased flaw population must change fracture behavior

G. Haag," *Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation*", *Juel-4183, 2005*

How does molten salt penetration into pores affect fracture behavior?

- Solidification of salt inside pores will create high internal tensile stresses
- Pore/crack growth will result.
- Exacerbates fracture?

12.5 mm x 1 mm (400 x)

PCEA A 15 % wt loss in air

Degradation - oxidation

- Lots of data and studies on graphite oxidation
- Need to develop improved models based on new data

1

11

Weight loss, %

Pristine

Radioactivity – tritium and fp build-up

- Build-up of tritium
 - Especially important for dissolved fuel
- Does graphite retain it? Diffusion rate?
 - Any build-up?

- Important for HTR design as well
 - Source term for accident calculations.
 - Waste disposal issues
 - How does temperature affect release rates (accident)?
 - Diffusion rate at accident temperatures?

Nondestructive Evaluation of Graphite

- Desperately need development of NDE Technologies for *large components* and *In-Service Inspection (ISI)*
- Conventional NDE Inspection technologies applicable to Graphite
 - Eddy Currents, X-Ray Radiography, and Ultrasonics

Will Windes

william.windes@inl.gov

Idaho National Laboratory (208) 526-6985

