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Goal 
• The program objective is take the ethanol upgrading technology 

from TRL 2 to TRL 3 and beyond during the course of investigation.  

• Our initial success has led to discovery of catalyst that operates at 
350°C and atmospheric pressure. Nevertheless, the side reactions 
produce coke which impedes the primary reaction of ethanol to C3+ 
hydrocarbons. Periodic decoking is required to remove coke.  

– We plan to focus on improving the durability of the catalyst for use 
with a bioethanol at any stage of purification.  

– The work will also allow us to develop detailed mass balance and 
energy balance data that are needed for detailed technoeconomic 
analysis.  

– We will also carry out fractional collection of blend-stock and get 
blend-stocks tested on gasoline, diesel, and jet engines.  
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Quad Chart Overview 

• Project start date: October 1, 2011 
• Project end date: September 30, 

2015 
• Percent complete: 30% 

• Overcoming blend-wall for biomass 
derived fuel 

• Techno-economically feasible 
process 

• Technology uses existing infra-
structure for manufacturing and 
distribution. 

• Funding for FY12: 150,000  
• Funding for FY13: 400,000  
• Years the project has been 

funded / average annual funding. 
2/275,000 

Timeline 

Budget 

Barriers 

• Multiple inquiries and follow-up 
discussions, but developing 
commercialization plans 

• Ongoing collaboration with NREL 
for technoeconomic analysis 

– Christopher Kinchin 
– Ling Tao 

 

Partners 
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Overview 
• Among biomass derived fuels, ethanol is a success story 

– It is added to gasoline to meet EPA regulatory requirements 

– However, its use is limited to 10% (or 15% for vehicles of model year 
2001 or beyond). Use of ethanol beyond  this blend wall requires Flex-
Fuel Vehicles which have been available for 25+ years but have a low 
market penetration 

• Catalytic conversion of ethanol to hydrocarbon blend-stock 
overcomes the blend wall 

• Our objective is to find a durable catalyst that can convert 
ethanol in fermentation stream at any stage of purification to 
hydrocarbon blend-stock under moderate conditions. This will 
lead to blend-stock cost competitive with petroleum derived fuel. 



5 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Approach 
• Our technical approach employs mechanistic studies to 

direct catalyst development for ethanol conversion to 
hydrocarbon blend-stock 

• The project is organized under following tasks and subtasks 

– TASK 1. Synthesis, characterization, and testing of metal-
exchanged zeolites as catalysts for ethanol (pure alcohol) 
upgrading 

• Subtask 1A. Conversion of ethanol in fermentation streams at various stages 
of purification 

• Subtask 1B. Fractional collection of blend-stock for gasoline, diesel, and jet 
fuels 

– Task 2: Technoeconomic Analysis (w/ NREL) 

• Our major “go-no go” decision point was based on catalyst 
durability 
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Ethanol Conversion 

• The plots show ethanol conversion to hydrocarbons and ethylene as a function of 
Liquid Hourly Space Velocity (LHSV) and Temperature. Water yields are omitted 
for simplicity 

– Ethanol conversion is stoichiometric. 

– The preferred initial condition is 350°C at LHSV of 1.2 h-1  

– Catalyst regenerates in air under 450°C 

Constant Temperature 350°C  Constant LHSV of 2.93 h-1 
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Simulated Fermentation Stream -Products 
are very similar 

• Partial GC trace of product 
stream 

• Simulated Fermentation 
Stream 

– Microorganism: Yeast 
Saccharomyces cerevisiae 

– Medium: Yeast  extract + 
Peptone + Dextrose 

– ~ 4.7% Ethanol 
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Catalyst Durability 

• Catalyst was operated at 350°C at a specified LHSV till C2+ formation 
started to fall 

• Catalyst was decoked by heating at 450°C and operation restarted 

– 200h at LHSV of 0.59 h-1 

– 100h at LHSV of 1.17 and 2.93 h-1 
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Mechanism 

• In order to get accurate data on the energy balance, the 
knowledge of ethanol conversion pathway is essential 

– The consensus in literature reports is that ethanol first converts to 
ethylene 

 

    C2H5OH  C2H4 + H2O  44.9 kJ/mol 

 

Product distribution 
does not show bias 
towards even carbon 
hydrocarbons! 



10 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Mechanism – Comparison with ethylene 
conversion 
• Ethanol and ethylene conversion to hydrocarbons as 

a function of temperature at LHSV of 2.93 h-1 (for 
ethylene, SV of 2241 h-1 is equivalent to ethanol 
LHSV of 2.93 h-1) 

• Ethylene conversion less efficient than ethanol 

Ethanol Conversion Ethylene Conversion 
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Mechanism – Experiments with Deuterated 
Ethanol 

• C2H5OD Experiment 

– Deuterium incorporation 

 

 

 

• D2O Experiments 

– Ethanol (70%) + D2O (30%) 

• Deuterium incorporation in all hydrocarbons except ethylene 

– Ethylene (70%) + D2O (30%) 

• No deuterium incorporation 

Rules out ethylene via the conventional mechanism 
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Mechanism – Experiments with 13C labeled 
Ethanol 

• Reaction of 13CH3CH2OH and CH3
13CH2OH over catalyst at 

350°C. 

• Scrambling of 13C in product stream indicates hydrocarbon 
pool mechanism 

• Pathway via ethylene not supported by product stream 

– Ethylbenzene contains four 13C regardless of precursor as 
expected 

– Toluene contains four 13C regardless of precursor 

• Should contain three 13C from 13CH3CH2OH 

• Should contain four 13C from CH3
13CH2OH 
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Mechanism – Hydrocarbon Pool Mechanism, 
a Likely Pathway 

• Methanol Conversion 

– 1,3-dimethylcyclopentadienyl cation 

– 1,1,2,4,6-pentamethylbenzenium cation 

 

• Ethanol Conversion 

– NMR evidence 

• Surface ethoxy at 20°C 

• Oligomeric alkoxy at 250°C 

– UV-Vis 

• Polyaromatics and unsaturated 
carbenium cations, such as, dienylic, 
trienylic carbenium or alkyl-substituted 
benzenium cations 

Hunger et al., ChemPhysChem, 2005, 6, 1467 

MTG Mechanism: Speybroeck et al., ChemCatChem, 2011, 3, 208 

CnH2n R or Ar 
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Mechanism – Alkylation of Aryl Compounds 

• The hydrocarbon pool mechanism suggests 

– Aromatic ring alkylation in mono-substituted benzenes 

• Alkyl groups on benzene are ortho, para-directing 

– Side chain alkylation in tri- or higher substituted benzenes 

• Steric hindrance 

• ortho, para-positions occupied 

• Experiments with a mixture of ethanol with 

– Mono-substituted benzenes – ethylbenzene, cumene, toluene – 
Aromatic ring alkylation 

– Tri-substituted benzene – 1,2,4-trimethylbenzene – side chain 
alkylation 

Better energy balance – No endothermic ethylene formation 
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Analysis of Fuel Product 
• Analysis at SGS North America, 1201 W 8th Street, Deer Park, TX  

– Boiling Range of  ~ 30oC  to 270oC 

– Composition by % Vol of Group 

– Total Calculated RON = 111.51 

– Total Calculated MON = 94.87 

Group % Volume 

Paraffins 3.855 

I-Paraffins 9.588 

Olefins 5.371 

Naphthalenes 1.988 

Aromatics 79.198 

Oxygenates 0.00 

Calculated Total 

Avg MW 99.98 

Avg SG 0.842 

Avg API @ 15.6 oC 38.54 

RVP 3.813 

Tot H 9.873 

C/H 9.087 

E200 9.162 

E300 74.148 

Fuel Properties 
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Engine Testing 
• Sturman variable valve actuation engine which can run at a low fuel 

quantity  

– Ported Fuel Injection (rail pressure 5 bar) 

– Engine was warmed-up using the gasoline direct injection fueling system so 
that none of the sample fuel was consumed 
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Engine Testing 
• Experimental demonstration shows comparable engine performance to 

certification gasoline with PFI fueling at 2000 rpm 5 bar net mean effective 
pressure 

* Small quantity of fuel (250 mL) prevented lambda from being fine-tuned, resulting in 
predictable increases in CO and HC emissions for ethanol to gasoline fuel 
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Jet Fuel/Diesel Blend Stock  
• Analysis at SGS North America, 1201 W 8th Street, Deer Park, TX 

– Boiling Range of  ~ 160oC  to 300oC  

– Composition by % Vol of Group 

– Total Calculated RON = 94.2 

– Total Calculated MON = 95.6 

Calculated Total 

Avg MW 129.97 

Avg SG 0.88 

Avg API @ 15.6 oC 30.1 

RVP 0.43 

Tot H 9.4 

C/H 9.63 

E200 0 

E300 4.59 

Fuel Properties 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

Blend Stock 

Typical Jet Fuel 



19 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Technoeconomic Model Introduction 

• Process model in Aspen Plus based on NREL research for 
biomass to ethanol steps (2011 Biochemical Design Report 
Update), ORNL research for ethanol to hydrocarbon step 

• Assumes nth-plant project cost factors and financing (ignores 
first-of-a-kind risks) 

• Discounted cash-flow ROR calculation includes 10% IRR, 
interest, and income taxes 

• Determines the plant-gate or minimum product selling price 

• Baseline ethanol selling price is $2.15/gal ethanol (2007$) or 
$3.27/gal gasoline eq. 

• Modeled conversions are based on anticipated pilot-scale 
performance in 2012 

Feedstock Composition 
Operating Conditions 

Conversion Yields 

Plant Model in 
Aspen Plus 

Flow rates 

Capital and  
Operating Costs 

Cost 
$ 

gal 
2011 Design Report Update 

http://www.nrel.gov/docs/fy11osti/47764.pdf  

http://www.nrel.gov/docs/fy11osti/47764.pdf
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Modeling Assumptions 

Co-fermentation 
C5 & C6 Sugars 

Hydrocarbons 

Electricity 

Enzymatic 
Hydrolysis 

Pretreatment 
(Dilute-acid) 

Enzyme 
Production 

Ethanol 
Recovery 

Residue 
Combustion Conversion Process 

Block Flow Diagram 
Catalytic  

Upgrading 
Corn 

Stover 

• Replace ethanol dehydration step with catalysis unit using >90% ethanol. 

• Plant size: 2,200 dry US ton/day corn stover 

• Incoming moisture: 20% 

• Ethanol Yield: 79.0 gal/dry U.S. ton feedstock 

• Feedstock cost: $58.50/dry ton 

• Internal Rate of Return: 10% 

• Equity Percent of Total Investment: 40%, 8% interest on difference 

• Upgrading of Ethanol Yields (mole %): 40.0% water, 15.6% ethylene, 44.4% hydrocarbon product 

• Upgrading reactor conditions: 350°C, LHSV of 1.17 hr-1 

• Separate C4- by distillation, combust for heating value 

• Techno-economic analysis is on-going.  Results will be available soon. 
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Progress against milestones 

• Milestones 

– Perform durability tests for 100h equivalent. [Completed] 

– Provide improved mass and energy data to enable 
technoeconomic assessment [in progress] 

– Perform durability test of 200h equivalent and gather >1 L of 
blendstocks [Completed] 

– Perform and report on engine tests of blendstocks [initial tests 
complete] 

• Fermentation stream testing 

– Initiated with simulated fermentation streams 

– Planned for corn starch ethanol and cellulosic ethanol 
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Relevance 

• The project accomplishments show a Chemical Pathway 
(catalytic process) to convert hydrolysis product 
(fermentation stream with ethanol) to hydrocarbon blend-
stock that can be fractionally collected and mixed with 
gasoline, jet-fuel, or diesel. 

– Blend-stock suitable for mixing with peteroleum derived fuel in any 
ratio 

– No benzene in product stream (EPA regulates to 0.68%) 

• The catalyst unit can be retrofitted to existing refineries or 
built into new ones 
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Critical Success Factors 

• Technical, economic, and business factors 

– Low cost durable catalyst that converts alcohol stream(s) to blend-
stock at moderate conditions 

– Moe ethanol being produced than necessary to meet the blend-
wall needs  

• Commercial viability will require scale-up 

– US Patent Applications 

• Zeolitic catalytic conversion of alcohols to hydrocarbons 

• Catalytic conversion of alcohols to hydrocarbons with low benzene 
content 
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Future Work 

• Beyond “go/no go” point 

• Testing conversion of fermentation streams 

– As produced 

– Distilled streams 

• Testing of non-ethanol fermentation streams at various 
stages of purification  
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Summary 
• Approach: Our technical approach employs mechanistic studies to 

direct catalyst development for ethanol conversion to hydrocarbon 
blend-stock 

• Technical Accomplishments: We have shown that ethanol can be 
converted to hydrocarbon blend-stock at 350°C and atmospheric 
pressure. The catalyst is durable 

• Relevance: Production of hydrocarbon blend-stock from biomass 

• Critical success factors: Beyond go/no-go point 

• Future work: Fermentation streams containing ethanol and other 
alcohols 

• Technology Transfer: Efforts to commercialize technology in 
progress 
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Additional Slides 
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Publications, Presentations, and 
Commercialization 
• Geiger, R.; Davison, B.H.; Szybist, J; Keller, M.; Narula, C.K.; Direct Catalytic 

Conversion of Ethanol Stream into Fuel, ACS Spring Meeting, San Diego, March 25, 
2012 

• Geiger, R.; Casbeer, E.; Davison, B.H.; Szybist, J; Keller, M.; Narula, C.K.; Direct 
Catalytic Conversion of Ethanol Stream into Blend-Stock Fuel, ACS Fall Meeting, 
Philadelphia, 2012 (Abstract published, presentation not made due to travel restrictions) 

•  Geiger, R.; Casbeer, E.; Davison, B.H.; Szybist, J; Keller, M.; Narula, C.K.; Direct 
Catalytic Conversion of Ethanol Stream into Blend-Stock Fuel, ACS Spring Meeting, 
New Orleans, 2013 

• Geiger, R.; Casbeer, E.; Davison, B.H.; Szybist, J; Keller, M.; Narula, C.K.; 
Hydrocarbon Blend-Stock from Catalytic Conversion of Biomass Derived Ethanol, 
North American Catalysis Society Meeting, Louisville, KY 2013 (accepted)  

• Casbeer, E.; Szybist, J; C. Kinchin; Keller, M.; Davison, B.H.; Narula, C.K.; Direct 
Catalytic Conversion of Aqueous Ethanol Streams into Hydrocarbon Blendstock, 
35th Symposium on Biotechnology for Fuels and Chemicals (April 29-May 2, 2013) 
at the Hilton Portland, Portland, OR. 
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